Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(5): 2637-2659, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38687958

RESUMO

Extensive research has been conducted on the application of nanoparticles in the treatment of cancer and infectious diseases. Due to their exceptional characteristics and flexible structure, they are classified as highly efficient drug delivery systems, ensuring both safety and targeted delivery. Nevertheless, nanoparticles still encounter obstacles, such as biological instability, absence of selectivity, recognition as unfamiliar elements, and quick elimination, which restrict their remedial capacity. To surmount these drawbacks, biomimetic nanotechnology has been developed that utilizes T cell and natural killer (NK) cell membrane-encased nanoparticles as sophisticated methods of administering drugs. These nanoparticles can extend the duration of drug circulation and avoid immune system clearance. During the membrane extraction and coating procedure, the surface proteins of immunological cells are transferred to the biomimetic nanoparticles. Such proteins present on the surface of cells confer several benefits to nanoparticles, including prolonged circulation, enhanced targeting, controlled release, specific cellular contact, and reduced in vivo toxicity. This review focuses on biomimetic nanosystems that are derived from the membranes of T cells and NK cells and their comprehensive extraction procedure, manufacture, and applications in cancer treatment and viral infections. Furthermore, potential applications, prospects, and existing challenges in their medical implementation are highlighted.


Assuntos
Membrana Celular , Células Matadoras Naturais , Nanopartículas , Neoplasias , Linfócitos T , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Membrana Celular/química , Viroses/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Teste de Materiais , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Talanta ; 265: 124846, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379752

RESUMO

Doxorubicin (DOX) is a highly effective anticancer drug with a narrow therapeutic window; thus, sensitive and timely detection of DOX is crucial. Using electrodeposition of silver nanoparticles (AgNPs) and electropolymerization of alginate (Alg) layers on the surface of a glassy carbon electrode, a novel electrochemical probe was constructed (GCE). The fabricated AgNPs/poly-Alg-modified GCE probe was utilized for the quantification of DOX in unprocessed human plasma samples. For the electrodeposition of AgNPs and electropolymerization of alginate (Alg) layers on the surface of GCE, cyclic voltammetry (CV) was used in the potential ranges of -2.0 to 2.0 V and -0.6 to 0.2 V, respectively. The electrochemical activity of DOX exhibited two oxidation processes at the optimum pH value of 5.5 on the surface of the modified GCE. The DPV spectra of poly(Alg)/AgNPs modified GCE probe toward consecutive concentrations of DOX in plasma samples demonstrated wide dynamic ranges of 15 ng/mL-0.1 µg/mL and 0.1-5.0 µg/mL, with a low limit of quantification (LLOQ) of 15 ng/mL. The validation results indicated that the fabricated electrochemical probe might serve as a highly sensitive and selective assay for the quantification of DOX in patient samples. As an outstanding feature, the developed probe could detect DOX in unprocessed plasma samples and cell lysates without the requirement for pretreatment.


Assuntos
Incrustação Biológica , Nanopartículas Metálicas , Humanos , Carbono , Doxorrubicina/análise , Prata , Incrustação Biológica/prevenção & controle , Eletrodos , Alginatos , Técnicas Eletroquímicas/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA