Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112323

RESUMO

Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-ß-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.


Assuntos
Regulação da Expressão Gênica , Poliadenilação , Humanos , Transição Epitelial-Mesenquimal/genética , Sequência de Bases , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas
2.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37536977

RESUMO

Epithelial-mesenchymal transition is essential for tissue patterning and organization. It involves both regulation of cell motility and alterations in the composition and organization of the ECM-a complex environment of proteoglycans and fibrous proteins essential for tissue homeostasis, signaling in response to chemical and biomechanical stimuli, and is often dysregulated under conditions such as cancer, fibrosis, and chronic wounds. Here, we demonstrate that basonuclin-2 (BNC2), a mesenchymal-expressed gene, that is, strongly associated with cancer and developmental defects across genome-wide association studies, is a novel regulator of ECM composition and degradation. We find that at endogenous levels, BNC2 controls the expression of specific collagens, matrix metalloproteases, and other matrisomal components in breast cancer cells, and in fibroblasts that are primarily responsible for the production and processing of the ECM within the tumour microenvironment. In so doing, BNC2 modulates the motile and invasive properties of cancers, which likely explains the association of high BNC2 expression with increasing cancer grade and poor patient prognosis.


Assuntos
Proteínas de Ligação a DNA , Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Colágeno/metabolismo , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/genética , Proteínas de Ligação a DNA/metabolismo
3.
EMBO J ; 37(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29871889

RESUMO

Members of the miR-200 family are critical gatekeepers of the epithelial state, restraining expression of pro-mesenchymal genes that drive epithelial-mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR-200c and another epithelial-enriched miRNA, miR-375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA-binding protein Quaking (QKI). During EMT, QKI-5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI-5 is both necessary and sufficient to direct EMT-associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial-derived cancer types. Importantly, several actin cytoskeleton-associated genes are directly targeted by both QKI and miR-200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT These findings demonstrate the existence of a miR-200/miR-375/QKI axis that impacts cancer-associated epithelial cell plasticity through widespread control of alternative splicing.


Assuntos
Processamento Alternativo/fisiologia , Plasticidade Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/fisiologia , Proteínas de Ligação a RNA/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos SCID
4.
Neural Dev ; 9: 24, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25363691

RESUMO

BACKGROUND: Neural crest cells (NCCs) are a transient embryonic cell type that give rise to a wide spectrum of derivatives, including neurons and glia of the sensory and autonomic nervous system, melanocytes and connective tissues in the head. Lineage-tracing and functional studies have shown that trunk NCCs migrate along two distinct paths that correlate with different developmental fates. Thus, NCCs migrating ventrally through the anterior somite form sympathetic and sensory ganglia, whereas NCCs migrating dorsolaterally form melanocytes. Although the mechanisms promoting migration along the dorsolateral path are well defined, the molecules providing positional identity to sympathetic and sensory-fated NCCs that migrate along the same ventral path are ill defined. Neuropilins (Nrp1 and Nrp2) are transmembrane glycoproteins that are essential for NCC migration. Nrp1 and Nrp2 knockout mice have disparate phenotypes, suggesting that these receptors may play a role in sorting NCCs biased towards sensory and sympathetic fates to appropriate locations. RESULTS: Here we have combined in situ hybridisation, immunohistochemistry and lineage-tracing analyses to demonstrate that neuropilins are expressed in a non-overlapping pattern within NCCs. Whereas Nrp1 is expressed in NCCs emigrating from hindbrain rhombomere 4 (r4) and within trunk NCCs giving rise to sympathetic and sensory ganglia, Nrp2 is preferentially expressed in NCCs emigrating from r2 and in trunk NCCs giving rise to sensory ganglia. By generating a tamoxifen-inducible lineage-tracing system, we further demonstrate that Nrp2-expressing NCCs specifically populate sensory ganglia including the trigeminal ganglia (V) in the head and the dorsal root ganglia in the trunk. CONCLUSIONS: Taken together, our results demonstrate that Nrp1 and Nrp2 are expressed in different populations of NCCs, and that Nrp2-expressing NCCs are strongly biased towards a sensory fate. In the trunk, Nrp2-expressing NCCs specifically give rise to sensory ganglia, whereas Nrp1-expressing NCCs likely give rise to both sensory and sympathetic ganglia. Our findings therefore suggest that neuropilins play an essential role in coordinating NCC migration with fate specification.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Crista Neural/citologia , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Animais , Animais Geneticamente Modificados , Células Cultivadas , Embrião de Mamíferos , Citometria de Fluxo , Gânglios Espinais/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Crista Neural/crescimento & desenvolvimento , Neuropilina-1/genética , Neuropilina-2/genética , Rombencéfalo/citologia , Proteína Wnt1/genética , Proteína Wnt1/metabolismo , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA