Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33060, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994081

RESUMO

Growth hormone (GH) is a pituitary protein that exerts pleiotropic roles in vertebrates. The mechanisms regulating GH synthesis and secretion are finely controlled by hypothalamic neuropeptides and other factors. These processes have been considerably studied in mammals but are still poorly understood in other groups. To better understand the pituitary GH regulation during vertebrate phylogeny, we compared the effects of incubating several peptides on cultures of ex-vivo pituitary fragments obtained from representative specimens of reptiles (iguana), birds (chicken) and mammals (rat). The peptides used were: growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), pituitary adenylate cyclase-activating polypeptide (PACAP), ghrelin, gonadotropin-releasing hormone (GnRH), and somatostatin (SST). In rat pituitary cultures, GH secretion was stimulated by GHRH and TRH, while gh mRNA expression was increased by GHRH and PACAP. In the case of chicken pituitaries, GH release was promoted by GHRH, ghrelin, PACAP, and GnRH, although the latter two had a dual effect since at a shorter incubation time they decreased GH secretion; in turn, gh mRNA expression was significantly stimulated by TRH, PACAP, and GnRH. The most intense effects were observed in iguana pituitary cultures, where GH secretion was significantly augmented by GHRH, PACAP, TRH, ghrelin, and GnRH; while gh mRNA expression was stimulated by GHRH, TRH, and PACAP, but inhibited by ghrelin and SST. Also, in the three species, SST was able to block the GHRH-stimulated GH release. Furthermore, it was found that the expression of Pou1f1 mRNA was increased with greater potency by GHRH and PACAP in the iguana, than in chicken or rat pituitary cultures. Additionally, in-silico analysis of the gh gene promoter structures in the three species showed that the reptilian promoter has more Pit-1 consensus binding sites than their avian and mammalian counterparts. Taken together, results demonstrate that pituitary peptide-mediated GH regulatory mechanisms are differentially controlled along vertebrate evolution.

2.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232848

RESUMO

Several motor, sensory, cognitive, and behavioral dysfunctions are associated with neural lesions occurring after a hypoxic injury (HI) in preterm infants. Growth hormone (GH) expression is upregulated in several brain areas when exposed to HI conditions, suggesting actions as a local neurotrophic factor. It is known that GH, either exogenous and/or locally expressed, exerts neuroprotective and regenerative actions in cerebellar neurons in response to HI. However, it is still controversial whether GH can cross the blood-brain barrier (BBB), and if its effects are exerted directly or if they are mediated by other neurotrophic factors. Here, we found that in ovo microinjection of Cy3-labeled chicken GH resulted in a wide distribution of fluorescence within several brain areas in the chicken embryo (choroid plexus, cortex, hypothalamus, periventricular areas, hippocampus, and cerebellum) in both normoxic and hypoxic conditions. In the cerebellum, Cy3-GH and GH receptor (GHR) co-localized in the granular and Purkinje layers and in deep cerebellar nuclei under hypoxic conditions, suggesting direct actions. Histological analysis showed that hypoxia provoked a significant modification in the size and organization of cerebellar layers; however, GH administration restored the width of external granular layer (EGL) and molecular layer (ML) and improved the Purkinje and granular neurons survival. Additionally, GH treatment provoked a significant reduction in apoptosis and lipoperoxidation; decreased the mRNA expression of the inflammatory mediators (TNFα, IL-6, IL-1ß, and iNOS); and upregulated the expression of several neurotrophic factors (IGF-1, VEGF, and BDNF). Interestingly, we also found an upregulation of cerebellar GH and GHR mRNA expression, which suggests the existence of an endogenous protective mechanism in response to hypoxia. Overall, the results demonstrate that, in the chicken embryo exposed to hypoxia, GH crosses the BBB and reaches the cerebellum, where it exerts antiapoptotic, antioxidative, anti-inflammatory, neuroprotective, and neuroregenerative actions.


Assuntos
Proteínas Aviárias/metabolismo , Hormônio do Crescimento/metabolismo , Fármacos Neuroprotetores , Animais , Barreira Hematoencefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cerebelo/metabolismo , Embrião de Galinha , Galinhas/metabolismo , Humanos , Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Mediadores da Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Invest Ophthalmol Vis Sci ; 60(14): 4532-4547, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675424

RESUMO

Purpose: In the retina, growth hormone (GH) promotes axonal growth, synaptic restoration, and protective actions against excitotoxicity. Notch signaling pathway is critical for neural development and participates in the retinal neuroregenerative process. We investigated the interaction of GH with Notch signaling pathway during its neuroprotective effect against excitotoxic damage in the chicken retina. Methods: Kainate (KA) was used as excitotoxic agent and changes in the mRNA expression of several signaling markers were determined by qPCR. Also, changes in phosphorylation and immunoreactivity were determined by Western blotting. Histology and immunohistochemistry were performed for morphometric analysis. Overexpression of GH was performed in the quail neuroretinal-derived immortalized cell line (QNR/D) cell line. Exogenous GH was administered to retinal primary cell cultures to study the activation of signaling pathways. Results: KA disrupted the retinal cytoarchitecture and induced significant cell loss in several retinal layers, but the coaddition of GH effectively prevented these adverse effects. We showed that GH upregulates the Notch signaling pathway during neuroprotection leading to phosphorylation of the PI3K/Akt signaling pathways through downregulation of PTEN. In contrast, cotreatment of GH with the Notch signaling inhibitor, DAPT, prevented its neuroprotective effect against KA. We identified binding sites in Notch1 and Notch2 genes for STAT5. Also, GH prevented Müller cell transdifferentiation and downregulated Sox2, FGF2, and PCNA after cotreatment with KA. Additionally, GH modified TNF receptors immunoreactivity suggesting anti-inflammatory actions. Conclusions: Our data indicate that the neuroprotective effects of GH against KA injury in the retina are mediated through the regulation of Notch signaling. Additionally, anti-inflammatory and antiproliferative effects were observed.


Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , Hormônio do Crescimento/uso terapêutico , Ácido Caínico/toxicidade , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Retina/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Galinhas , Vetores Genéticos , Injeções Intravítreas , Fármacos Neuroprotetores/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Transdução de Sinais/fisiologia , Organismos Livres de Patógenos Específicos , Transfecção
4.
Neurourol Urodyn ; 37(5): 1574-1582, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-30133853

RESUMO

AIM: To evaluate the effects of a treatment with leuprolide acetate (LA) on bladder overactivity as well as the expression of gonadotropin releasing hormone receptor (GnRH-R), and neurofilaments NF68 and NF200 in female rats with overactive bladder induced by castration. METHODS: Changes in the urodynamic parameters were determined in SHAM, ovariectomized (OVX) and ovariectomized rats treated with LA (OVX-LA). A semi-quantitative analysis for the expression pattern of GnRH-R and neurofilaments NF68 and NF200 were determined. RESULTS: Forty-three days after ovariectomy, rats from the OVX group have significant lower values for intercontractile interval (ICI) and compliance (C); as well as higher values for basal bladder pressure (BP) and frequency of non-voiding contractions (NVC). The systemic application of LA increased voiding volume (Vv) and pressure threshold (ThP) in the OVX-LA animals. The application of LA reduced the high frequency of NVC in the OVX rats. No significant differences were found for Vv and NVCs between the OVX-LA vs SHAM groups. At the mid part of the bladder, the presence of GnRH-R was evidenced in the urothelium of the SHAM group. The OVX animals showed different pattern of immunolabeling for GnRH-R as well as for neurofilaments NF200 and NF68, whereas in the OVX-LA group the immunofluorescence pattern was similar to the one seen in SHAM bladders (P < 0.05 for OVX vs OVX + LA). CONCLUSIONS: the results suggest that systemic application of LA can improve bladder dysfunction in castrated rats, and perhaps considered as a treatment for overactive bladder conditions secondary to menopause.


Assuntos
Leuprolida/farmacologia , Ovariectomia , Receptores LHRH/agonistas , Urodinâmica/efeitos dos fármacos , Animais , Complacência (Medida de Distensibilidade)/efeitos dos fármacos , Feminino , Contração Muscular/efeitos dos fármacos , Proteínas de Neurofilamentos/biossíntese , Proteínas de Neurofilamentos/genética , Ratos , Ratos Wistar , Receptores LHRH/biossíntese , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
5.
Gen Comp Endocrinol ; 255: 90-101, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28974369

RESUMO

The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.


Assuntos
Hormônio Liberador de Hormônio do Crescimento/genética , Iguanas/genética , Fator de Crescimento Insulin-Like I/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Somatostatina/genética , Hormônio Liberador de Tireotropina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Hormônio Liberador de Hormônio do Crescimento/química , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/metabolismo , Filogenia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/química , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Hormônio Liberador de Tireotropina/química , Hormônio Liberador de Tireotropina/metabolismo
6.
Gen Comp Endocrinol ; 230-231: 76-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27044512

RESUMO

Growth hormone (GH), together with thyroid hormones (TH), regulates growth and development, and has critical effects on vertebrate metabolism. In ectotherms, these physiological processes are strongly influenced by environmental temperature. In reptiles, however, little is known about the direct influences of this factor on the somatotropic and thyroid axes. Therefore, the aim of this study was to describe the effects of both acute (48h) and chronic (2weeks) exposure to sub-optimal temperatures (25 and 18°C) upon somatotropic and thyroid axis function of the green iguana, in comparison to the control temperature (30-35°C). We found a significant increase in GH release (2.0-fold at 25°C and 1.9-fold at 18°C) and GH mRNA expression (up to 3.7-fold), mainly under chronic exposure conditions. The serum concentration of insulin-like growth factor-I (IGF-I) was significantly greater after chronic exposure (18.5±2.3 at 25°C; 15.92±3.4 at 18°C; vs. 9.3±1.21ng/ml at 35°C), while hepatic IGF-I mRNA expression increased up to 6.8-fold. Somatotropic axis may be regulated, under acute conditions, by thyrotropin-releasing hormone (TRH) that significantly increased its hypothalamic concentration (1.45 times) and mRNA expression (0.9-fold above control), respectively; and somatostatin (mRNA expression increased 1.0-1.2 times above control); and under chronic treatment, by pituitary adenylate cyclase-activating peptide (PACAP mRNA expression was increased from 0.4 to 0.6 times). Also, it was shown that, under control conditions, injection of TRH stimulated a significant increase in circulating GH. On the other hand, while there was a significant rise in the hypothalamic content of TRH and its mRNA expression, this hormone did not appear to influence the thyroid axis activity, which showed a severe diminution in all conditions of cold exposure, as indicated by the decreases in thyrotropin (TSH) mRNA expression (up to one-eight of the control), serum T4 (from 11.6±1.09 to 5.3±0.58ng/ml, after 2weeks at 18°C) and T3 (from 0.87±0.09 to 0.05±0.01ng/ml, under chronic conditions at 25°C), and Type-2 deiodinase (D2) activity (from 992.5±224 to 213.6±26.4fmolI(125)T4/mgh). The reduction in thyroid activity correlates with the down-regulation of metabolism as suggested by the decrease in the serum glucose and free fatty acid levels. These changes apparently were independent of a possible stress response, at least under acute exposure to both temperatures and in chronic treatment to 25°C, since serum corticosterone had no significant changes in these conditions, while at chronic 18°C exposure, a slight increase (0.38 times above control) was found. Thus, these data suggest that the reptilian somatotropic and thyroid axes have differential responses to cold exposure, and that GH and TRH may play important roles associated to adaptation mechanisms that support temperature acclimation in the green iguana.


Assuntos
Hormônio do Crescimento/metabolismo , Iguanas/metabolismo , Temperatura , Glândula Tireoide/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Glicemia/análise , Corticosterona/sangue , Hormônio do Crescimento/genética , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Iguanas/sangue , Iguanas/genética , Fator de Crescimento Insulin-Like I/genética , Iodeto Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/sangue , Somatostatina/genética , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/sangue , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Tireotropina/genética , Hormônio Liberador de Tireotropina/administração & dosagem , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/farmacologia
7.
Gen Comp Endocrinol ; 224: 148-59, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231908

RESUMO

Growth hormone (GH) is expressed in several extra-pituitary tissues, including the primary and secondary lymphoid organs of the immune system. In birds, GH mRNA and protein expression show a specific developmental distribution pattern in the bursa of Fabricius (BF), particularly in epithelial and B cells. Changes in the bursal concentration and distribution of locally produced GH during ontogeny suggest it is involved in B cell differentiation and maturation, as well as in a functional survival role in this organ, which may be mediated by paracrine/autocrine mechanisms. Here, we analyzed the anti-apoptotic effect of GH in BF and the intracellular signaling pathways involved in this activity. Also, we studied if this effect was exerted directly by GH or mediated indirectly by IGF-I. Bursal cell cultures showed an important loss of their viability after 4h of incubation and a significant increase in apoptosis. However, treatment with 10nM GH or 40 nM IGF-I significantly increased B cell viability (16.7 ± 0.67% and 13.4 ± 1.12%, respectively) when compared with the untreated controls. In addition, the presence of apoptotic bodies (TUNEL) dramatically decreased (5.5-fold) after GH and IGF-I treatments, whereas co-incubation with anti-GH or anti-IGF-I, respectively, blocked their anti-apoptotic effect. Likewise, both GH and IGF-I significantly inhibited caspase-3 activity (by 40 ± 2.0%) in these cultures. However, the use of anti-IGF-I could not reverse the GH anti-apoptotic effects, thus indicating that these were exerted directly. The addition of 100 nM wortmannin (a PI3K/Akt inhibitor) blocked the GH protective effects. Also, GH stimulated (3-fold) the phosphorylation of Akt in bursal cells, and adding wortmannin or an anti-GH antibody inhibited this effect. Furthermore, GH was capable to stimulate (7-fold) the expression of Bcl-2. Taken together, these results indicate that the direct anti-apoptotic activity of GH observed in the chicken bursal B cell cultures might be mediated through the PI3K/Akt pathway.


Assuntos
Apoptose/efeitos dos fármacos , Bolsa de Fabricius/metabolismo , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Western Blotting , Bolsa de Fabricius/citologia , Bolsa de Fabricius/efeitos dos fármacos , Caspase 3/metabolismo , Células Cultivadas , Galinhas/metabolismo , Ensaio de Imunoadsorção Enzimática , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Masculino , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
8.
Gen Comp Endocrinol ; 220: 103-11, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25448258

RESUMO

Growth hormone (GH) and prolactin (PRL) are both endocrines that are synthesized and released from the pituitary gland into systemic circulation. Both are therefore hormones and both have numerous physiological roles mediated through a myriad of target sites and both have pathophysiological consequences when present in excess or deficiency. GH or PRL gene expression is not, however, confined to the anterior pituitary gland and it occurs widely in many of their central and peripheral sites of action. This may reflect "leaky gene" phenomena and the fact that all cells have the potential to express every gene that is present in their genome. However, the presence of GH or PRL receptors in these extrapituitary sites of GH and PRL production suggests that they are autocrine or paracrine sites of GH and PRL action. These local actions often occur prior to the ontogeny of pituitary somatotrophs and lactotrophs and they may complement or differ from the roles of their pituitary counterparts. Many of these local actions are also of physiological significance, since they are impaired by a blockade of local GH or PRL production or by an antagonism of local GH or PRL action. These local actions may also be of pathophysiological significance, since autocrine or paracrine actions of GH and PRL are thought to be causally involved in a number of disease states, particularly in cancer. Autocrine GH for instance, is thought to be more oncogenic than pituitary GH and selective targeting of the autocrine moiety may provide a therapeutic approach to prevent tumor progression. In summary, GH and PRL are not just endocrine hormones, as they have autocrine and/or paracrine roles in health and disease.


Assuntos
Hormônio do Crescimento Humano/genética , Hormônio do Crescimento Humano/metabolismo , Prolactina/genética , Prolactina/metabolismo , Comunicação Autócrina , Expressão Gênica , Humanos , Comunicação Parácrina , Hipófise/metabolismo
9.
Gen Comp Endocrinol ; 203: 281-95, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24769041

RESUMO

Pituitary growth hormone (GH) has been studied in most vertebrate groups; however, only a few studies have been carried out in reptiles. Little is known about pituitary hormones in the order Squamata, to which the green iguana (gi) belongs. In this work, we characterized the hypophysis of Iguana iguana morphologically. The somatotrophs (round cells of 7.6-10 µm containing 250- to 300-nm secretory granules where the giGH is stored) were found, by immunohistochemistry and in situ hybridization, exclusively in the caudal lobe of the pars distalis, whereas the lactotrophs were distributed only in the rostral lobe. A pituitary giGH-like protein was obtained by immuno-affinity chromatography employing a heterologous antibody against chicken GH. giGH showed molecular heterogeneity (22, 44, and 88 kDa by SDS-PAGE/Western blot under non-reducing conditions and at least four charge variants (pIs 6.2, 6.5, 6.9, 7.4) by isoelectric focusing. The pituitary giGH cDNA (1016 bp), amplified by PCR and RACE, encodes a pre-hormone of 218 aa, of which 190 aa correspond to the mature protein and 28 aa to the signal peptide. The giGH receptor cDNA was also partially sequenced. Phylogenetic analyses of the amino acid sequences of giGH and giGHR homologs in vertebrates suggest a parallel evolution and functional relationship between the GH and its receptor.


Assuntos
Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Iguanas/genética , Iguanas/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Eletroforese em Gel de Poliacrilamida , Evolução Molecular , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Filogenia , Hipófise/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Somatotrofos/metabolismo
10.
Gen Comp Endocrinol ; 190: 182-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23684966

RESUMO

Growth hormone (GH) has several effects on the immune system. Our group has shown that GH is produced in the chicken bursa of Fabricius (BF) where it may act as an autocrine/paracrine modulator that participates in B-cell differentiation and maturation. The time course of GH mRNA and protein expression in the BF suggests that GH may be involved in development and involution of the BF, since GH is known to be present mainly in B lymphocytes and epithelial cells. In addition, as GH is anti-apoptotic in other tissues, we assessed the possibility that GH promotes cell survival in the BF. This work focused on determining the mechanism by which GH can inhibit apoptosis of B cells and if the PI3K/Akt pathway is activated. Bursal cell cultures were treated with a range of GH concentrations (0.1-100nM). The addition of 10nM GH significantly increased viability (16.7±0.6%) compared with the control and decreased caspase-3 activity to 40.6±6.5% of the control. Together, these data indicate that GH is produced locally in the BF and that the presence of exogenous GH in B cell cultures has antiapoptotic effects and increases B cell survival, probably through the PI3k/Akt pathway.


Assuntos
Hormônio do Crescimento/metabolismo , Animais , Linfócitos B/metabolismo , Bolsa de Fabricius/metabolismo , Galinhas , Sistema Imunitário/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Gen Comp Endocrinol ; 183: 17-31, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23262274

RESUMO

Neuroprotection is a mechanism within the central nervous system (CNS) that protects neurons from damage as a result of a severe insult. It is known that growth hormone (GH) is involved in cell survival and may inhibit apoptosis in several cell types, including those of the CNS. Both GH and GH-receptor (GHR) genes are expressed in the cerebellum. Thus, we investigated the possible neuroprotective role of GH in this organ, which is very sensitive to hypoxic/ischemic conditions. Endogenous GH levels increased in the brain and cerebellum (30% and 74%, respectively) of 15-day-old chicken embryos exposed to hypoxia during 24h compared to normoxia. In primary embryonic cerebellar neuron cultures treated under hypoxia (0.5% O(2)) and low glucose (1g/L) conditions (HLG) for 1h, GH levels increased 1.16-fold compared to the control. The addition of 1nM recombinant chicken GH (rcGH) to cultures during HLG increased cell viability (1.7-fold) and the expression of Bcl-2 (1.67-fold); in contrast the caspase-3 activity and the proportion of apoptotic cells decreased (37% and 54.2%, respectively) compared to HLG. rcGH activated the PI3K/Akt pathway both under normoxic and HLG conditions, increasing the proportion of phosphorylated Akt (1.7- and 1.4-fold, respectively). These effects were abolished by wortmannin and by immunoneutralization, indicating that GH acts through this signaling pathway. Furthermore, the 15-kDa GH variant (10nM) significantly increased cell viability and decreased caspase-3 activity during HLG condition. Thus GH may act as a paracrine/autocrine neuroprotective factor that preserves cellular viability and inhibits apoptotic cell death.


Assuntos
Cerebelo/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Hipóxia-Isquemia Encefálica/veterinária , Fármacos Neuroprotetores/farmacologia , Androstadienos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patologia , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes bcl-2/efeitos dos fármacos , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/fisiologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/patologia , Inibidores de Fosfoinositídeo-3 Quinase , Wortmanina
12.
Gen Comp Endocrinol ; 175(2): 297-310, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22142535

RESUMO

Preovulatory follicular development (PFD) is mainly regulated by gonadotropins (FSH, LH) and steroids, although other intraovarian factors are also involved. We analyzed the local expression of growth hormone (GH) in the hen ovary and the role that this hormone may play on the regulation of steroidogenesis in granulosa cells (GCs). Ovarian follicles from sexually mature hens were studied at different developmental stages. Both GH mRNA (by in situ hybridization) and protein (by immunohistochemistry) were expressed mainly in the GCs, and to a lesser extent in the theca cells of the follicular wall. Sequence of a GH cDNA 690-bp fragment obtained from the follicular wall was identical to that obtained from the pituitary. The growth hormone receptor (GHR) mRNA was also expressed in the follicles. Nine GH variants were observed by SDS-PAGE and Western blotting, but the main isoform showed a MW of 17 kDa, at all developmental stages. Addition of GH (0.1, 1, 10 nM) stimulated the synthesis of progesterone (P4) in primary GCs cultures in a dose-dependent manner (1.5, 2.9, 5.4 times, respectively). GH also stimulated the expression of cholesterol side-chain cleavage enzyme (cytochrome P450scc) mRNA, a rate-limiting enzyme during P4 synthesis (2.9, 4.6, 4.9 times, respectively), whereas the synthesis of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) mRNA (a constitutive enzyme) was not changed. Both GH and GHR were co-expressed in GCs cultures. The locally expressed GH present in concentrated (4×, 6×, 8×) conditioned media obtained from ovarian GC cultures stimulated P4 production (1.2, 2.2, 4.4 times, respectively) in additional fresh cultured GCs, and this effect disappeared when the conditioned media were treated with antiserum against GH. These data suggest that locally produced GH may modulate follicular development through autocrine/paracrine effects in the chicken ovary.


Assuntos
Galinhas/metabolismo , Células da Granulosa/metabolismo , Hormônio do Crescimento/metabolismo , Ovário/metabolismo , Progesterona/biossíntese , Receptores da Somatotropina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , Galinhas/crescimento & desenvolvimento , Eletroforese em Gel de Poliacrilamida , Feminino , Hormônio do Crescimento/química , Dados de Sequência Molecular , RNA Mensageiro/metabolismo
13.
Gen Comp Endocrinol ; 132(1): 119-24, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12765651

RESUMO

Sex steroid hormones have been shown to regulate somatostatin (SRIF) gene expression in goldfish brain, which in turn influences the regulation of GH secretion. In this study, the influences of sex steroids on pituitary responsiveness to SRIF-14 and the pituitary expression of a type two SRIF receptor (sst(2)) were examined. Results from in vitro perifusion of pituitary fragments show that pituitaries from estradiol-primed sexually regressed female fish have significantly lower GH release responsiveness to pulse exposure to SRIF-14 than pituitaries from control or testosterone-treated sexually regressed females. Results from in vitro static culture show that pituitaries from sexually mature female fish have lower GH release responsiveness to SRIF-14 than those from sexually regressed females. In addition, the sst(2) receptor mRNA levels in pituitaries from mature and recrudescent female fish are significantly lower than in sexually regressed female fish. Our results indicate that estradiol acts at the level of the pituitary to regulate GH secretion by influencing the responsiveness to SRIF-14. The underlying mechanism includes, in part, reduction of the expression of sst(2) receptors, presumably leading to the lower number of the receptors available for SRIF binding.


Assuntos
Estradiol/farmacologia , Carpa Dourada/metabolismo , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Receptores de Somatostatina/metabolismo , Somatostatina/farmacologia , Animais , Regulação para Baixo , Feminino , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Somatostatina/genética
14.
Endocrine ; 17(2): 91-102, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12041920

RESUMO

Variants of growth hormone (GH) are present in most vertebrates. Chicken GH (cGH) undergoes posttranslational modifications that contribute to its structural diversity. Although the 22-kDa form of GH is the most abundant, some other variants have discrete bioactivities that may not be shared by others. The proportion of cGH variants changes during ontogeny, suggesting that they are regulated differentially. The effect of growth hormone-releasing hormone (GHRH) on the release of cGH variants was studied in both pituitary gland and primary cell cultures, employing sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and densitometry. GHRH (2 nM, 2 h) stimulated the secretion of most of the size variants of cGH although the amplitude of increase was not equal for each one. A differential effect on the secretion of GH size variants, particularly on the 22- (monomer) and 26-kDa (putatively glycosylated) cGH isoforms was found in both systems. In the whole pituitary culture, the proportion of the 26-kDa immunoreactive cGH increased 35% while the 22 kDa decreased 31% after GHRH treatment in comparison with the controls. In the primary cell culture system, the proportion of the glycosylated variant increased 43% whereas the monomer and the dimer decreased 22.26 and 29%, respectively, after GHRH stimulation. Activators of intracellular signals such as 1 mM 8-bromo-cAMP and 1 microM phorbol myristate acetate had a similar effect to that obtained with GHRH. The data support the hypothesis that GH variants may be under differential control and that GHRH promotes the release of a glycosylated cGH variant that has an extended half-life in circulation.


Assuntos
Galinhas/metabolismo , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animais , Western Blotting/veterinária , Células Cultivadas , Galinhas/fisiologia , Eletroforese em Gel de Poliacrilamida/veterinária , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Técnicas de Cultura de Órgãos , Hipófise/efeitos dos fármacos , Isoformas de Proteínas , Transdução de Sinais/fisiologia , Acetato de Tetradecanoilforbol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA