Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890315

RESUMO

Lysine specific demethylase 1 (LSD1; also known as KDM1A), is an epigenetic modulator that modifies the histone methylation status. KDM1A forms a part of protein complexes that regulate the expression of genes involved in the onset and progression of diseases such as cancer, central nervous system (CNS) disorders, viral infections, and others. Vafidemstat (ORY-2001) is a clinical stage inhibitor of KDM1A in development for the treatment of neurodegenerative and psychiatric diseases. However, the role of ORY-2001 targeting KDM1A in neuroinflammation remains to be explored. Here, we investigated the effect of ORY-2001 on immune-mediated and virus-induced encephalomyelitis, two experimental models of multiple sclerosis and neuronal damage. Oral administration of ORY-2001 ameliorated clinical signs, reduced lymphocyte egress and infiltration of immune cells into the spinal cord, and prevented demyelination. Interestingly, ORY-2001 was more effective and/or faster acting than a sphingosine 1-phosphate receptor antagonist in the effector phase of the disease and reduced the inflammatory gene expression signature characteristic ofEAE in the CNS of mice more potently. In addition, ORY-2001 induced gene expression changes concordant with a potential neuroprotective function in the brain and spinal cord and reduced neuronal glutamate excitotoxicity-derived damage in explants. These results pointed to ORY-2001 as a promising CNS epigenetic drug able to target neuroinflammatory and neurodegenerative diseases and provided preclinical support for the subsequent design of early-stage clinical trials.

2.
Clin Transl Sci ; 13(2): 419-429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31729169

RESUMO

Reliably predicting in vivo efficacy from in vitro data would facilitate drug development by reducing animal usage and guiding drug dosing in human clinical trials. However, such prediction remains challenging. Here, we built a quantitative pharmacokinetic/pharmacodynamic (PK/PD) mathematical model capable of predicting in vivo efficacy in animal xenograft models of tumor growth while trained almost exclusively on in vitro cell culture data sets. We studied a chemical inhibitor of LSD1 (ORY-1001), a lysine-specific histone demethylase enzyme with epigenetic function, and drug-induced regulation of target engagement, biomarker levels, and tumor cell growth across multiple doses administered in a pulsed and continuous fashion. A PK model of unbound plasma drug concentration was linked to the in vitro PD model, which enabled the prediction of in vivo tumor growth dynamics across a range of drug doses and regimens. Remarkably, only a change in a single parameter-the one controlling intrinsic cell/tumor growth in the absence of drug-was needed to scale the PD model from the in vitro to in vivo setting. These findings create a framework for using in vitro data to predict in vivo drug efficacy with clear benefits to reducing animal usage while enabling the collection of dense time course and dose response data in a highly controlled in vitro environment.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Conjuntos de Dados como Assunto , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/metabolismo , Humanos , Camundongos , Neoplasias/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Cell ; 33(3): 495-511.e12, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29502954

RESUMO

The lysine-specific demethylase KDM1A is a key regulator of stem cell potential in acute myeloid leukemia (AML). ORY-1001 is a highly potent and selective KDM1A inhibitor that induces H3K4me2 accumulation on KDM1A target genes, blast differentiation, and reduction of leukemic stem cell capacity in AML. ORY-1001 exhibits potent synergy with standard-of-care drugs and selective epigenetic inhibitors, reduces growth of an AML xenograft model, and extends survival in a mouse PDX (patient-derived xenograft) model of T cell acute leukemia. Surrogate pharmacodynamic biomarkers developed based on expression changes in leukemia cell lines were translated to samples from patients treated with ORY-1001. ORY-1001 is a selective KDM1A inhibitor in clinical trials and is currently being evaluated in patients with leukemia and solid tumors.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Histona Desmetilases/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Modelos Animais de Doenças , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
5.
Nat Commun ; 8: 14797, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300085

RESUMO

The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias da Mama/metabolismo , Receptor ErbB-2/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Receptor ErbB-2/genética , Proteínas rac de Ligação ao GTP/genética
6.
Radiother Oncol ; 119(2): 300-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27247056

RESUMO

AIMS: We have previously shown in a phase I trial that nelfinavir (NFV) is safe with chemoradiation in PDAC with good signs for efficacy. Reverse translationally, we aimed to test the influence of PSCs on nelfinavir mediated radiosensitization to PDAC preclinically, because PDAC is very rich in desmoplasia and PSCs are known to mediate radioresistance. METHODS: In a direct co-culture model of several PDAC cell lines with PSC we performed clonogenic assays +/- nelfinavir. This was repeated exposing cells to hypoxic conditions. In xenograft PDAC tumors we tested radiation +/- nelfinavir +/- PSC. RESULTS: NFV sensitized both, PDAC only and PDAC cocultured with PSC (PDAC: Panc-1, MiaPaCa-2, PSN-1). In Panc-1 and PSN-1 this effect was larger +PSC compared to -PSC. Human pancreatic stellate cells (hPSC) were also sensitized by NFV which reduced p-FAK levels in hPSC, an effect that we previously found to sensitize specifically PDAC/PSC coculture. Contrarily, LY294002 reduced p-Akt in PSC (hPSC and LTC-14) but had no impact on PSC radiation survival. In vitro, nelfinavir sensitized Panc-1 and PSN-1 under normoxic and hypoxic conditions. In PSN-1 xenografts, +PSC led to faster tumor regrowth after radiation vs -PSC. The regrowth delay effect of nelfinavir after radiation was dramatically larger +PSC vs -PSC (time to reach 250mm(3) 183% vs 22%). CONCLUSION: NFV mediated radiosensitization in PDAC with stroma is partly mediated by p-FAK inhibition (Chen et al., 2013). In vitro, NFV sensitizes both normoxic and hypoxic PDAC +/- PSC to a roughly similar extent. The dramatic increased effect of xenograft regrowth inhibition by nelfinavir in tumors with PSC is attributed to vascular normalization (Brunner et al., 2014) rather than direct modification of hypoxia as shown by the tumor regrowth after gemcitabine with NFV.


Assuntos
Inibidores da Protease de HIV/farmacologia , Nelfinavir/farmacologia , Neoplasias Pancreáticas/radioterapia , Células Estreladas do Pâncreas/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/patologia
7.
Oncoimmunology ; 4(9): e1027473, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26405599

RESUMO

Pancreatic stellate cells (PSCs) are key components of pancreatic ductal adenocarcinoma (PDAC). We recently demonstrated that IP-10/CXCL10 is highly expressed by PSCs in the presence of pancreatic cancer cells (PCCs) and its expression correlates with infiltration by regulatory T cells (Tregs) and poor survival. Thus, stromal cells in pancreatic cancer can promote immunosuppression and tumor progression, through the expression of IP-10.

8.
Epigenomics ; 7(4): 609-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111032

RESUMO

Histone methylation and demethylation are important processes associated with the regulation of gene transcription, and alterations in histone methylation status have been linked to a large number of human diseases. Initially thought to be an irreversible process, histone methylation is now known to be reversed by two families of proteins containing over 30 members that act to remove methyl groups from specific lysine residues present in the tails of histone H3 and histone H4. A rapidly growing number of reports have implicated the FAD-dependent lysine specific demethylase (KDM1) family in cancer, and several small-molecule inhibitors are in development for the treatment of cancer. An additional role has emerged for KDM1 in brain function, offering additional opportunities for the development of novel therapeutic strategies in neurodegenerative disease. A decade after the identification of KDM1A as a histone demethylase, the first selective inhibitors have now reached the clinic.


Assuntos
Epigênese Genética , Histona Desmetilases/genética , Neoplasias/genética , Doenças Neurodegenerativas/genética , Sequência de Aminoácidos , Animais , Terapia Genética , Histona Desmetilases/química , Histona Desmetilases/metabolismo , Humanos , Dados de Sequência Molecular , Neoplasias/terapia , Doenças Neurodegenerativas/terapia
9.
Oncotarget ; 5(22): 11064-80, 2014 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-25415223

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant desmoplastic reaction driven by pancreatic stellate cells (PSCs) that contributes to tumor progression. Here we sought to characterize the interactions between pancreatic cancer cells (PCCs) and PSCs that affect the inflammatory and immune response in pancreatic tumors. Conditioned media from mono- and cocultures of PSCs and PCCs were assayed for expression of cytokines and growth factors. IP-10/CXCL10 was the most highly induced chemokine in coculture of PSCs and PCCs. Its expression was induced in the PSCs by PCCs. IP-10 was elevated in human PDAC specimens, and positively correlated with high stroma content. Furthermore, gene expression of IP-10 and its receptor CXCR3 were significantly associated with the intratumoral presence of regulatory T cells (Tregs). In an independent cohort of 48 patients with resectable pancreatic ductal adenocarcinoma, high IP-10 expression levels correlated with decreased median overall survival. Finally, IP-10 stimulated the ex vivo recruitment of CXCR3+ effector T cells as well as CXCR3+ Tregs derived from patients with PDAC. Our findings suggest that, in pancreatic cancer, CXCR3+ Tregs can be recruited by IP-10 expressed by PSCs in the tumor stroma, leading to immunosuppressive and tumor-promoting effects.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Quimiocina CXCL10/biossíntese , Neoplasias Pancreáticas/imunologia , Linfócitos T Reguladores/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Células HEK293 , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/imunologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Células Estromais/imunologia , Células Estromais/metabolismo , Células Estromais/patologia , Análise de Sobrevida , Linfócitos T Reguladores/patologia
10.
Radiother Oncol ; 111(2): 243-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24780634

RESUMO

BACKGROUND AND PURPOSE: Progression of pancreatic ductal adenocarcinoma (PDAC) is promoted by desmoplasia induced by pancreatic stellate cells (PSC). Contributory to this progression is epithelial mesenchymal transition (EMT), which shares many characteristics with the cancer stem cell (CSC) hypothesis. We investigated the role of these processes on the radioresponse and tumorigenicity of pancreatic cancer cells. MATERIALS AND METHODS: We used an in vitro sphere model and in vivo xenograft model to examine the role of PSC in EMT and CSC processes. RESULTS: We demonstrated that PSC enhanced the CSC phenotype and radioresistance of pancreatic cancer cells. Furthermore, the expression of several EMT and CSC markers supported enhanced processes in our models and that translated into remarkable in vivo tumorigenicity. Multi-dose TGFß neutralizing antibody inhibited the EMT and CSC processes, sensitized cells to radiation and reduced in vivo tumorigenicity. A proteomic screen identified multiple novel factors that were regulated by PSC in pancreatic cells. CONCLUSION: These results are critical in highlighting the role of PSC in tumor progression and radioresistance by manipulating the EMT and CSC processes. TGFß and the novel factors identified are important targets for better therapeutic outcome in response to PSC mediated mechanisms.


Assuntos
Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/fisiologia , Tolerância a Radiação/fisiologia , Adenocarcinoma/radioterapia , Anticorpos Neutralizantes/farmacologia , Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/radioterapia , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Fibroblastos/patologia , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Neoplasias Pancreáticas/radioterapia , Fenótipo , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
11.
Cancer Lett ; 343(2): 147-55, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24141189

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterised by an abundant stromal response also known as a desmoplastic reaction. Pancreatic Stellate Cells have been identified as playing a key role in pancreatic cancer desmoplasia. There is accumulating evidence that the stroma contributes to tumour progression and to the low therapeutic response of PDAC patients. In this review we described the main actors of the desmoplastic reaction within PDAC and novel therapeutic approaches that are being tested to block the detrimental function of the stroma.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Pancreáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compartimento Celular/efeitos dos fármacos , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Células Estromais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
12.
Cancer Res ; 71(10): 3453-8, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21558392

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a strong desmoplastic reaction where the stromal compartment often accounts for more than half of the tumor volume. Pancreatic stellate cells (PSC) are a central mediator of desmoplasia. There is increasing evidence that desmoplasia is contributing to the poor therapeutic response of PDAC. We show that PSCs promote radioprotection and stimulate proliferation in pancreatic cancer cells (PCC) in direct coculture. Our in vivo studies show PSC-dependent radioprotection in response to a single dose and to fractionated radiation. Abrogating ß1-integrin signaling abolishes the PSC-mediated radioprotection in PCCs. Furthermore, this effect is independent of PI3K (phosphoinositide 3-kinase) but dependent on FAK. Taken together, we show for the first time that PSCs promote radioprotection of PCCs in a ß1-integrin-dependent manner.


Assuntos
Integrina beta1/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Células Estreladas do Pâncreas/citologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Feminino , Humanos , Camundongos , Camundongos Nus , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
13.
Cancer Biol Ther ; 11(12): 1028-35, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21558789

RESUMO

The concept of cancer stem cells is generally accepted in different malignancies. We have previously shown that the MDA-MB231 breast cancer cells were more radiation resistant when sorted for the two stem cell markers CD24 and ESA. In this study, we examined a possible mechanism that might underlie this phenotype by looking at cell cycle profile and the effect this has on DNA repair pathways. The cell cycle profile showed that there were more CD24(-) ESA(+) sorted MDA-MB231 cells in the S- and G(2)-phases compared with the unsorted cells, 60 and 38% respectively. Cyclin D and E protein levels supported the cell cycle profile and highlighted the possible involvement of homologous recombination (HR) repair in the radioresistant phenotype. To further support this, CD24(-) ESA(+) sorted MDA-MB231 cells demonstrated statistically significant more RAD51 and less γ-H2AX foci 2 h post 4Gy ionising radiation, compared with the unsorted population. Inhibition of the HR pathway effectively sterilised the CD24(- ) ESA(+) sorted MDA-MB231 cells but had no effect on the unsorted cells or MDA468 control breast cancer cell line. Although the changes we saw were specific to MDA-MB231, these results merit further investigation and can be crucial in identifying a mechanism responsible for cancer stem cells treatment resistance in primary tumors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Células-Tronco Neoplásicas/patologia , Recombinação Genética/genética , Benzofuranos/farmacologia , Ciclo Celular , Linhagem Celular Tumoral , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Células-Tronco Neoplásicas/citologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Recombinação Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA