Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(9): 100621, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478973

RESUMO

Targeted mass spectrometry (MS)-based proteomic assays, such as multiplexed multiple reaction monitoring (MRM)-MS assays, enable sensitive and specific quantification of proteotypic peptides as stoichiometric surrogates for proteins. Efforts are underway to expand the use of MRM-MS assays in clinical environments, which requires a reliable strategy to monitor proteolytic digestion efficiency within individual samples. Towards this goal, extended stable isotope-labeled standard (SIS) peptides (hE), which incorporate native proteolytic cleavage sites, can be spiked into protein lysates prior to proteolytic (trypsin) digestion, and release of the tryptic SIS peptide (hT) can be monitored. However, hT measurements alone cannot monitor the extent of digestion and may be confounded by matrix effects specific to individual patient samples; therefore, they are not sufficient to monitor sample-to-sample digestion variability. We hypothesized that measuring undigested hE, along with its paired hT, would improve detection of digestion issues compared to only measuring hT. We tested the ratio of the SIS pair measurements, or hE/hT, as a quality control (QC) metric of trypsin digestion for two MRM assays: a direct-MRM (398 targets) and an immuno-MRM (126 targets requiring immunoaffinity peptide enrichment) assay, with extended SIS peptides observable for 54% (216) and 62% (78) of the targets, respectively. We evaluated the quantitative bias for each target in a series of experiments that adversely affected proteolytic digestion (e.g., variable digestion times, pH, and temperature). We identified a subset of SIS pairs (36 for the direct-MRM, 7 for the immuno-MRM assay) for which the hE/hT ratio reliably detected inefficient digestion that resulted in decreased assay sensitivity and unreliable endogenous quantification. The hE/hT ratio was more responsive to a decrease in digestion efficiency than a metric based on hT measurements alone. For clinical-grade MRM-MS assays, this study describes a ready-to-use QC panel and also provides a road map for designing custom QC panels.


Assuntos
Peptídeos , Proteômica , Humanos , Proteômica/métodos , Tripsina/química , Peptídeos/análise , Espectrometria de Massas/métodos , Controle de Qualidade , Digestão
2.
Front Oncol ; 13: 1168710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205196

RESUMO

Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.

3.
Anal Chem ; 94(27): 9540-9547, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767427

RESUMO

Despite advances in proteomic technologies, clinical translation of plasma biomarkers remains low, partly due to a major bottleneck between the discovery of candidate biomarkers and costly clinical validation studies. Due to a dearth of multiplexable assays, generally only a few candidate biomarkers are tested, and the validation success rate is accordingly low. Previously, mass spectrometry-based approaches have been used to fill this gap but feature poor quantitative performance and were generally limited to hundreds of proteins. Here, we demonstrate the capability of an internal standard triggered-parallel reaction monitoring (IS-PRM) assay to greatly expand the numbers of candidates that can be tested with improved quantitative performance. The assay couples immunodepletion and fractionation with IS-PRM and was developed and implemented in human plasma to quantify 5176 peptides representing 1314 breast cancer biomarker candidates. Characterization of the IS-PRM assay demonstrated the precision (median % CV of 7.7%), linearity (median R2 > 0.999 over 4 orders of magnitude), and sensitivity (median LLOQ < 1 fmol, approximately) to enable rank-ordering of candidate biomarkers for validation studies. Using three plasma pools from breast cancer patients and three control pools, 893 proteins were quantified, of which 162 candidate biomarkers were verified in at least one of the cancer pools and 22 were verified in all three cancer pools. The assay greatly expands capabilities for quantification of large numbers of proteins and is well suited for prioritization of viable candidate biomarkers.


Assuntos
Neoplasias da Mama , Proteômica , Biomarcadores/análise , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Feminino , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteínas , Proteômica/métodos
4.
Front Immunol ; 12: 765898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858420

RESUMO

Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Manejo de Espécimes/métodos , Anticorpos/análise , Anticorpos/imunologia , Western Blotting , Linhagem Celular Tumoral , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Peptídeos/sangue , Peptídeos/imunologia , Proteoma/genética , Proteoma/imunologia , RNA-Seq/métodos , Reprodutibilidade dos Testes
5.
Environ Sci Technol ; 50(12): 6363-73, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27172378

RESUMO

Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.


Assuntos
Cisteína , Fotólise , Cinética , Processos Fotoquímicos , Soluções , Luz Solar , Poluentes Químicos da Água
6.
Chimia (Aarau) ; 68(11): 812-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26508490

RESUMO

Amino acids, peptides and proteins are central building blocks of life and of key importance in the biogeochemistry of aquatic ecosystems. In sunlit surface waters, amino acid-based molecules at different levels of structural organization are susceptible to transformation by both direct photochemical reactions and indirect processes caused by photochemically produced reactive oxygen species (e.g. hydroxyl radical or singlet oxygen). Photochemical transformation processes can thereby affect the availability of these crucial nutrient sources in aquatic ecosystems, inhibit the function of microbial extracellular enzymes, or even promote the degradation of amino acid-based pollutant molecules. In this article, the environmental photochemistry of amino acids, peptides and proteins in aquatic systems is reviewed.


Assuntos
Aminoácidos/química , Peptídeos/química , Fotoquímica , Proteínas/química , Poluentes Químicos da Água , Processos Fotoquímicos
7.
Environ Sci Technol ; 47(24): 14215-23, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24274590

RESUMO

It has long been appreciated that the photooxidation kinetics of amino acid (AA) residues in an intact protein differ from those of free AAs due to differences in the local steric microenvironment, such as its location in the three-dimensional structure. Yet there are only a few studies that have quantified the effect of protein structure on the photochemical reactivity of its residues. This is important for predicting phototransformation rates of AAs in aquatic environments where AAs in combined forms (e.g., oligopeptides and proteins) are more abundant than free AAs. In this work, the photochemical reactivity differences between free and combined AAs were assessed. Singlet oxygen ((1)O2) reaction kinetics of individual photooxidizable residues in the protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were examined. The results suggest that the (1)O2 accessibility of residues in intact GAPDH has a profound effect on their photodegradation kinetics and for histidine residues can explain most of the variation in (1)O2 reactivity. Additionally, (1)O2-accessibile surface area values of residues calculated from protein crystal structure data are useful in predicting their reaction rates in GAPDH. This work illustrates a new approach to assess the differential photochemical reactivity of AA-based biomolecules in natural environments or engineered applications.


Assuntos
Aminoácidos/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Oxigênio Singlete/química , Sequência de Aminoácidos , Cristalografia por Raios X , Meio Ambiente , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Histidina/química , Cinética , Dados de Sequência Molecular , Peptídeos/química , Fotólise , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA