Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(8): 3325-3332, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27688816

RESUMO

A laboratory-built sheath liquid capillary electrophoresis-mass spectrometry interface was used to develop a qualitative method for fingerprinting analysis of 14 structurally similar flavones, flavonols, flavonones, and several representative glycosides in plant samples. The migration order of the flavonoids was dependent on a the number of hydroxyl groups present on the flavonoid B-ring, extent of conjugation, number of glycosidic functionalities, and ability of the flavonoid to form stable borate complexes with the background electrolyte. Parent ion scans of the flavonoids yielded [M-H]-, except for catechol containing flavonoids, which were detected as borate adducts. These adducts can be used diagnostically to determine the presence or absence of catechol groups on unknown polyphenolic compounds. Product ion scans of the flavonoid glycosides and borate adducts typically yielded the deprotonated aglycone fragment as the base peak, which could be used to confirm the base structure of the flavonoid. This method's utility was demonstrated by analyzing flavonoids present in ethanolic extracts of Ginkgo biloba herbal supplements.

2.
J Pharmacol Exp Ther ; 355(1): 48-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26216942

RESUMO

MRP4 mediates the efflux of cGMP and cAMP and acts as an important regulator of these secondary messengers, thereby affecting signaling events mediated by cGMP and cAMP. Immunofluorescence staining showed high MRP4 expression localized predominantly in the apical membrane of rat colonic epithelium. In vitro studies were performed using a rat colonic mucosal layer mounted in an Ussing chamber. Linaclotide activation of the guanylate cyclase-C (GC-C)/cGMP pathway induced a concentration-dependent increase in transepithelial ion current [short-circuit current (Isc)] across rat colonic mucosa (EC50: 9.2 nM). Pretreatment of colonic mucosa with the specific MRP4 inhibitor MK571 potentiated linaclotide-induced electrolyte secretion and augmented linaclotide-stimulated intracellular cGMP accumulation. Notably, pretreatment with the phosphodiesterase 5 inhibitor sildenafil increased basal Isc, but had no amplifying effect on linaclotide-induced Isc. MRP4 inhibition selectively affected the activation phase, but not the deactivation phase, of linaclotide. In contrast, incubation with a GC-C/Fc chimera binding to linaclotide abrogated linaclotide-induced Isc, returning to baseline. Furthermore, linaclotide activation of GC-C induced cGMP secretion from the apical and basolateral membranes of colonic epithelium. MRP4 inhibition blocked cGMP efflux from the apical membrane, but not the basolateral membrane. These data reveal a novel, previously unrecognized mechanism that functionally couples GC-C-induced luminal electrolyte transport and cGMP secretion to spatially restricted, compartmentalized regulation by MRP4 at the apical membrane of intestinal epithelium. These findings have important implications for gastrointestinal disorders with symptoms associated with dysregulated fluid homeostasis, such as irritable bowel syndrome with constipation, chronic idiopathic constipation, and secretory diarrhea.


Assuntos
GMP Cíclico/metabolismo , Eletrólitos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Peptídeos/farmacologia , Propionatos/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Guanilato Ciclase/metabolismo , Receptores de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Colo/citologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/fisiologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Cinética , Ratos , Ratos Sprague-Dawley , Receptores de Enterotoxina
3.
J Pharm Biomed Anal ; 107: 518-25, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25720821

RESUMO

Disulfiram (DSF), a treatment for alcohol use disorders, has shown some clinical effectiveness in treating addiction to cocaine, nicotine, and pathological gambling. The mechanism of action of DSF for treating these addictions is unclear but it is unlikely to involve the inhibition of liver aldehyde dehydrogenase (ALDH2). DSF is a pro-drug and forms a number of metabolites, one of which is N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC). Here we describe a LCMS/MS method on a QQQ type instrument to quantify DETC-NAC in plasma and intracellular fluid from mammalian brain. An internal standard, the N,N-di-isopropylcarbamoyl homolog (MIM: 291>128) is easily separable from DETC-NAC (MIM: 263>100) on C18 RP media with a methanol gradient. The method's linear range is 0.5-500 nM from plasma and dialysate salt solution with all precisions better than 10% RSD. DETC-NAC and internal standards were recovered at better than 95% from all matrices, perchloric acid precipitation (plasma) or formic acid addition (salt) and is stable in plasma or salt at low pH for up to 24 h. Stability is observed through three freeze-thaw cycles per day for 7 days. No HPLC peak area matrix effect was greater than 10%. A human plasma sample from a prior analysis for S-(N,N-diethylcarbamoyl) glutathione (CARB) was found to have DETC NAC as well. In other human plasma samples from 62.5 mg/d and 250 mg/d dosing, CARB concentration peaks at 0.3 and 4 nM at 3 h followed by DETC-NAC peaks of 11 and 70 nM 2 h later. Employing microdialysis sampling, DETC-NAC levels in the nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and plasma of rats treated with DSF reached 1.1, 2.5 and 80 nM at 6h. The correlation between the appearance and long duration of DETC-NAC concentration in rat brain and the persistence of DSF-induced changes in neurotransmitters observed by Faiman et al. (Neuropharmacology, 2013, 75C, 95-105) is discussed.


Assuntos
Acetilcisteína/análogos & derivados , Dissulfiram/sangue , Dissulfiram/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Tiocarbamatos/metabolismo , Acetilcisteína/sangue , Acetilcisteína/metabolismo , Animais , Feminino , Humanos , Masculino , Microdiálise/métodos , Pró-Fármacos/metabolismo , Ratos , Ratos Sprague-Dawley , Tiocarbamatos/sangue
4.
Neuropharmacology ; 75: 95-105, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23891816

RESUMO

Disulfiram (DSF), used for the treatment of alcohol use disorders (AUDs) for over six decades, most recently has shown promise for treating cocaine dependence. Although DSF's mechanism of action in alcohol abuse is due to the inhibition of liver mitochondrial aldehyde dehydrogenase (ALDH2), its mechanism of action in the treatment of cocaine dependence is unknown. DSF is a pro-drug, forming a number of metabolites each with discrete pharmacological actions. One metabolite formed during DSF bioactivation is S-(N, N-diethylcarbamoyl) glutathione (carbamathione) (carb). We previously showed that carb affects glutamate binding. In the present studies, we employed microdialysis techniques to investigate the effect of carb administration on dopamine (DA), GABA, and glutamate (Glu) in the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), two brain regions implicated in substance abuse dependence. The effect of DSF on DA, GABA, and Glu in the NAc also was determined. Both studies were carried out in male rats. Carb (20, 50, 200 mg/kg i v) in a dose-dependent manner increased DA, decreased GABA, and had a biphasic effect on Glu, first increasing and then decreasing Glu in both the NAc and mPFC. These changes all occurred concurrently. After carb administration, NAc and mPFC carb, as well as carb in plasma, were rapidly eliminated with a half-life for each approximately 4 min, while the changes in DA, GABA, and GLu in the NAc and mPFC persisted for approximately two hours. The maximal increase in carb (Cmax) in the NAc and mPFC after carb administration was dose-dependent, as was the area under the curve (AUC). DSF (200 mg/kg i p) also increased DA, decreased GABA, and had a biphasic effect on Glu in the NAc similar to that observed in the NAc after carb administration. When the cytochrome P450 inhibitor N-benzylimidazole (NBI) (20 mg/kg i p) was administered before DSF dosing, no carb could be detected in the NAc and plasma and also no changes in NAc DA, GABA, and GLu occurred. Changes in these neurotransmitters occurred only if carb was formed from DSF. When NBI was administered prior to dosing with carb, the increase in DA, decrease in GABA, and biphasic effect on GLu was similar to that seen after dosing with carb only. The i p or i v administration of carb showed similar changes in DA, GABA, and GLu, except the time to reach Cmax for DA as well as the changes in GABA, and GLu after i p administration occurred later. The elimination half-life of carb and the area under the curve (AUC) were similar after both routes of administration. It is concluded that carb must be formed from DSF before any changes in DA, GABA, and GLu in the NAc and mPFC are observed. DSF and carb, when administered to rats, co-release DA, GABA, and GLu. Carb, once formed can cross the blood brain barrier and enter the brain. Although inhibition of liver ALDH2 is the accepted mechanism for DSF's action in treating AUDs, the concurrent changes in DA, GABA, and GLu in the NAc and mPFC after DSF administration suggest that changes in these neurotransmitters as a potential mechanism of action not only for AUDs, but also for cocaine dependence cannot be excluded.


Assuntos
Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/análogos & derivados , Núcleo Accumbens/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Antagonistas Adrenérgicos alfa/farmacologia , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Glutationa/química , Glutationa/metabolismo , Glutationa/farmacologia , Imidazóis/farmacologia , Masculino , Microdiálise , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
5.
Electrophoresis ; 32(2): 284-91, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21254127

RESUMO

Disulfiram has been used as a deterrent in the treatment of alcohol abuse for almost 60 years. Our laboratory has shown that a disulfiram metabolite, S-(N,N-diethylcarbamoyl) glutathione (carbamathione), is formed from disulfiram and appears in the brain after the administration of disulfiram. Carbamathione does not inhibit aldehyde dehydrogenase but has been shown to be a partial non-competitive inhibitor of the N-methyl-D-aspartic acid glutamate (Glu) receptor. In light of disulfiram's apparent clinical effectiveness in cocaine dependence, and carbamathione's effect on the N-methyl-D-aspartic acid receptor, the effect of carbamathione on brain Glu and γ-aminobutyric acid (GABA) needs to be further examined. A CE-LIF method based on derivatization with napthalene-2,3-dicarboxyaldehyde to simultaneously detect both neurotransmitter amino acids and carbamathione in brain microdialysis samples is described. The separation of Glu, GABA and carbamathione was carried out using a 50 mmol/L boric acid buffer (pH 9.6) on a 75 cm×50 µm id fused-silica capillary (60 cm effective) at +27.5 kV voltage with a run time of 11 min. The detection limits for Glu, GABA and carbamathione were 6, 10 and 15 nmol/L, respectively. This method was used to monitor carbamathione and the amino acid neurotransmitters in brain microdialysis samples from the nucleus accumbens after the administration of an intravenous dose of the drug (200 mg/kg) and revealed a carbamathione-induced change in GABA and Glu levels. This method demonstrates a simple, rapid and accurate measurement of two amino acid neurotransmitters and carbamathione for in vivo monitoring in the brain using microdialysis sampling.


Assuntos
Encéfalo/metabolismo , Eletroforese Capilar/métodos , Ácido Glutâmico/análise , Glutationa/análogos & derivados , Microdiálise/métodos , Ácido gama-Aminobutírico/análise , Animais , Fluorescência , Ácido Glutâmico/metabolismo , Glutationa/análise , Glutationa/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/metabolismo
6.
J Pharm Biomed Anal ; 51(1): 186-91, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19709836

RESUMO

A selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of S-(N, N-diethylcarbamoyl) glutathione (carbamathione) in microdialysis samples from rat brain and plasma. S-(N, N-Diethylcarbamoyl) glutathione (carbamathione) is a metabolite of disulfiram. This metabolite may be responsible for disulfiram's effectiveness in the treatment of cocaine dependence. Chromatographic separations were carried out on an Alltech Altima C-18 (50 mm long x 2.1 mm i.d., 3 microm particles) analytical column at a flow rate of 0.3 ml/min. Solvent A consisted of 10 mM ammonium formate, methanol, and formic acid (99:1:0.06, v/v/v). Solvent B consisted of methanol, 10 mM ammonium formate and formic acid (99:1:0.06, v/v/v). A 20 min linear gradient from 95% aqueous to 95% organic was used. Tandem mass spectra were acquired on a Micromass Quattro Ultima "triple" quadrupole mass spectrometer equipped with an ESI interface. Quantitative mass spectrometric analysis was conducted in positive ion mode selected reaction monitoring (SRM) mode looking at the transition of m/z 407-100 and 175 for carbamathione and m/z 392-263 for the internal standard S-hexyl glutathione. The simultaneous collection of microdialysate from blood and brain was used to monitor carbamathione concentrations centrally and peripherally. Good linearity was obtained over a concentration range of 0.25-10,000 nM. The lowest limit of quantification (LLOQ) was determined to be 1 nM and the lowest limit of detection (LLOD) was calculated to be 0.25 nM. Intra- and inter-day accuracy and precision were determined and for all the samples evaluated, the variability was less that 10% (R.S.D.).


Assuntos
Cromatografia Líquida/métodos , Glutationa/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Animais , Encéfalo/metabolismo , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Dissulfiram/metabolismo , Dissulfiram/uso terapêutico , Glutationa/administração & dosagem , Glutationa/análise , Glutationa/metabolismo , Masculino , Microdiálise/métodos , Ratos , Ratos Sprague-Dawley , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
J Sep Sci ; 31(10): 1828-33, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18461567

RESUMO

Anthracyclines are chemotherapeutic drugs that are widely used in the treatment of cancers such as lung and ovarian cancers. The simultaneous determination of the anthracyclines, daunorubicin, doxorubicin and epirubicin, was achieved using CE coupled to LIF, with an excitation and emission wavelength of 488 and 560 nm, respectively. Using a borate buffer (105 mM, pH 9.0) and 30% MeOH, a stable and reproducible separation of the three anthracyclines was obtained. The method developed was shown to be capable of monitoring the therapeutic concentrations (50-50 000 ng/mL) of anthracyclines. LODs of 10 ng/mL, calculated at an S/N = 3, were achieved. Using the CE method developed, the in vitro protein binding to plasma was measured by ultrafiltration, and from this investigation the estimated protein binding was determined to be in the range of 77-94%.


Assuntos
Antraciclinas/análise , Antraciclinas/sangue , Antibióticos Antineoplásicos/análise , Antibióticos Antineoplásicos/sangue , Antineoplásicos/análise , Antineoplásicos/sangue , Eletroforese Capilar/métodos , Ultrafiltração/métodos , Boratos/química , Daunorrubicina/análise , Doxorrubicina/análise , Epirubicina/análise , Humanos , Metanol/química , Modelos Químicos , Ligação Proteica , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-15996908

RESUMO

Capillary electrophoresis (CE) has become a useful analytical tool for the analysis of microdialysis samples. However, CE with UV detection (CE-UV) does not provide detection limits sufficient to quantify glutathione (GSH) and glutathione disulfide (GSSG) in biological samples such as liver microdialysates, because of the small optical path length in the capillary. To overcome this limitation, an on-column preconcentration technique, pH-mediated base stacking, was used in this study to improve the sensitivity of CE-UV. This stacking technique allowed large volumes of high ionic strength sample injection without deterioration of the separation efficiency and resolution. A 26-fold increase in sensitivity was achieved for both GSH and GSSG using the pH-mediated base stacking, relative to normal injection without stacking. The limit of detection for GSH and GSSG was found to be 0.75 microM (S/N=6) and 0.25 microM (S/N=6), respectively. The developed method was used to analyze GSH and GSSG in liver microdialysates of anesthetized Sprague Dawley male rats. The basal concentrations of GSH and GSSG in the liver microdialysates of male rats were found to be 4.73+/-2.08 microM (n=7) and 5.52+/-3.66 microM (n=7), respectively.


Assuntos
Eletroforese Capilar/métodos , Dissulfeto de Glutationa/isolamento & purificação , Glutationa/isolamento & purificação , Animais , Concentração de Íons de Hidrogênio , Fígado/química , Masculino , Microdiálise , Concentração Osmolar , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA