Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Immunol ; 158: 1-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37453753

RESUMO

During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Humanos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína DEAD-box 58/metabolismo , Transdução de Sinais , Imunidade Inata , RNA
2.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891424

RESUMO

Diseases caused by flaviviruses such as dengue virus (DENV) and West Nile Virus (WNV), are a serious threat to public health. The flavivirus single-stranded RNA genome is translated into a polyprotein which is cleaved into three structural proteins and seven non-structural proteins by the viral and cellular proteases. Non-structural (NS) protein 3 is a multifunctional protein that has N-terminal protease and C-terminal helicase domains. The NS3 protease requires co-factor NS2B for enzymatic activity and folding. Due to its essential role in viral replication, NS2B-NS3 protease is an attractive target for antiviral drugs. Despite the availability of crystal structures, dynamic interactions of the N- and C-termini of NS2B co-factor have been elusive due to their flexible fold. In this study, we employ integrative structural approaches combined with biochemical assays to elucidate the dynamic interactions of the flexible DENV4 NS2B and NS3 N- and C-termini. We captured the crystal structure of self-cleaved DENV4 NS2B47NS3 protease in post cleavage state. The intermediate conformation adopted in the reported structure can be targeted by allosteric inhibitors. Comparison of our new findings from DENV4 against previously studied ZIKV NS2B-NS3 proteins reveals differences in NS2B-NS3 function between the two viruses. No inhibition of protease activity was observed for unlinked DENV NS2B-NS3 in presence of the cleavage site while ZIKV NS2B-NS3 cleavage inhibits protease activity. Another difference is that binding of the NS2B C-terminus to DENV4 eNS2B47NS3Pro active site is mediated via interactions with P4-P6 residues while for ZIKV, the binding of NS2B C-terminus to active site is mediated by P1-P3 residues. The mapping of NS2B N- and C-termini with NS3 indicates that these intermolecular interactions occur mainly on the beta-barrel 2 of the NS3 protease domain. Our integrative approach enables a comprehensive understanding of the folding and dynamic interactions of DENV NS3 protease and its cofactor NS2B.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Domínio Catalítico , Flavivirus/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/genética , Zika virus/metabolismo
3.
J Biol Chem ; 298(8): 102250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35835220

RESUMO

Rubella, a viral disease characterized by a red skin rash, is well controlled because of an effective vaccine, but outbreaks are still occurring in the absence of available antiviral treatments. The Rubella virus (RUBV) papain-like protease (RubPro) is crucial for RUBV replication, cleaving the nonstructural polyprotein p200 into two multifunctional proteins, p150 and p90. This protease could represent a potential drug target, but structural and mechanistic details important for the inhibition of this enzyme are unclear. Here, we report a novel crystal structure of RubPro at a resolution of 1.64 Å. The RubPro adopts a unique papain-like protease fold, with a similar catalytic core to that of proteases from Severe acute respiratory syndrome coronavirus 2 and foot-and-mouth disease virus while having a distinctive N-terminal fingers domain. RubPro has well-conserved sequence motifs that are also found in its newly discovered Rubivirus relatives. In addition, we show that the RubPro construct has protease activity in trans against a construct of RUBV protease-helicase and fluorogenic peptides. A protease-helicase construct, exogenously expressed in Escherichia coli, was also cleaved at the p150-p90 cleavage junction, demonstrating protease activity of the protease-helicase protein. We also demonstrate that RubPro possesses deubiquitylation activity, suggesting a potential role of RubPro in modulating the host's innate immune responses. We anticipate that these structural and functional insights of RubPro will advance our current understanding of its function and help facilitate more structure-based research into the RUBV replication machinery, in hopes of developing antiviral therapeutics against RUBV.


Assuntos
Peptídeo Hidrolases , Vírus da Rubéola , Motivos de Aminoácidos , Papaína/química , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Dobramento de Proteína , Estrutura Terciária de Proteína , Vírus da Rubéola/química , Vírus da Rubéola/enzimologia
4.
Proc Natl Acad Sci U S A ; 119(31): e2121453119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35881805

RESUMO

Human ZAP inhibits many viruses, including HIV and coronaviruses, by binding to viral RNAs to promote their degradation and/or translation suppression. However, the regulatory role of ZAP in host mRNAs is largely unknown. Two major alternatively spliced ZAP isoforms, the constitutively expressed ZAPL and the infection-inducible ZAPS, play overlapping yet different antiviral and other roles that need further characterization. We found that the splicing factors hnRNPA1/A2, PTBP1/2, and U1-snRNP inhibit ZAPS production and demonstrated the feasibility to modulate the ZAPL/S balance by splice-switching antisense oligonucleotides in human cells. Transcriptomic analysis of ZAP-isoform-specific knockout cells revealed uncharacterized host mRNAs targeted by ZAPL/S with broad cellular functions such as unfolded protein response (UPR), epithelial-mesenchymal transition (EMT), and innate immunity. We established that endogenous ZAPL and ZAPS localize to membrane compartments and cytosol, respectively, and that the differential localization correlates with their target-RNA specificity. We showed that the ZAP isoforms regulated different UPR branches under resting and stress conditions and affected cell viability during ER stress. We also provided evidence for a different function of the ZAP isoforms in EMT-related cell migration, with effects that are cell-type dependent. Overall, this study demonstrates that the competition between splicing and IPA is a potential target for the modulation of the ZAPL/S balance, and reports new cellular transcripts and processes regulated by the ZAP isoforms.


Assuntos
Transição Epitelial-Mesenquimal , RNA Mensageiro , RNA Viral , Proteínas de Ligação a RNA , Resposta a Proteínas não Dobradas , Transição Epitelial-Mesenquimal/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
5.
Nucleic Acids Res ; 50(10): 5850-5863, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580046

RESUMO

DDX58 encodes RIG-I, a cytosolic RNA sensor that ensures immune surveillance of nonself RNAs. Individuals with RIG-IE510V and RIG-IQ517H mutations have increased susceptibility to Singleton-Merten syndrome (SMS) defects, resulting in tissue-specific (mild) and classic (severe) phenotypes. The coupling between RNA recognition and conformational changes is central to RIG-I RNA proofreading, but the molecular determinants leading to dissociated disease phenotypes remain unknown. Herein, we employed hydrogen/deuterium exchange mass spectrometry (HDX-MS) and single molecule magnetic tweezers (MT) to precisely examine how subtle conformational changes in the helicase insertion domain (HEL2i) promote impaired ATPase and erroneous RNA proofreading activities. We showed that the mutations cause a loosened latch-gate engagement in apo RIG-I, which in turn gradually dampens its self RNA (Cap2 moiety:m7G cap and N1-2-2'-O-methylation RNA) proofreading ability, leading to increased immunopathy. These results reveal HEL2i as a unique checkpoint directing two specialized functions, i.e. stabilizing the CARD2-HEL2i interface and gating the helicase from incoming self RNAs; thus, these findings add new insights into the role of HEL2i in the control of antiviral innate immunity and autoimmunity diseases.


Assuntos
Doenças Autoimunes , Odontodisplasia , Doenças Autoimunes/genética , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Humanos , Imunidade Inata/genética , Metacarpo , RNA/química
6.
J Extracell Vesicles ; 11(4): e12187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35430766

RESUMO

The RIG-I pathway can be activated by RNA containing 5' triphosphate, leading to type I interferon release and immune activation. Hence, RIG-I agonists have been used to induce immune responses against cancer as potential immunotherapy. However, delivery of 5' triphosphorylated RNA molecules as RIG-I agonists to tumour cells in vivo is challenging due to the susceptibility of these molecules to degradation. In this study, we demonstrate the use of extracellular vesicles (EVs) from red blood cells (RBCs), which are highly amenable for RNA loading and taken up robustly by cancer cells, for RIG-I agonist delivery. We evaluate the anti-cancer activity of two novel RIG-I agonists, the immunomodulatory RNA (immRNA) with a unique secondary structure for efficient RIG-I activation, and a 5' triphosphorylated antisense oligonucleotide with dual function of RIG-I activation and miR-125b inhibition (3p-125b-ASO). We find that RBCEV-delivered immRNA and 3p-125b-ASO trigger the RIG-I pathway, and induce cell death in both mouse and human breast cancer cells. Furthermore, we observe a significant suppression of tumour growth coupled with increased immune cell infiltration mediated by the activation of RIG-I cascade after multiple intratumoral injections of RBCEVs loaded with immRNA or 3p-125b-ASO. Targeted delivery of immRNA using RBCEVs with EGFR-binding nanobody administrated via intrapulmonary delivery facilitates the accumulation of RBCEVs in metastatic cancer cells, leading to potent tumour-specific CD8+ T cells immune response. This contributes to prominent suppression of breast cancer metastasis in the lung. Hence, this study provides a new strategy for efficient RIG-I agonist delivery using RBCEVs for immunotherapy against cancer and cancer metastasis.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Melanoma , Animais , Neoplasias da Mama/tratamento farmacológico , Linfócitos T CD8-Positivos , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Fatores Imunológicos/metabolismo , Imunoterapia , Melanoma/metabolismo , Camundongos , RNA/metabolismo , Neoplasias Cutâneas , Melanoma Maligno Cutâneo
7.
Immunity ; 54(10): 2218-2230.e5, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644557

RESUMO

The RNA sensor MDA5 recruits the signaling adaptor MAVS to initiate type I interferon signaling and downstream antiviral responses, a process that requires K63-linked polyubiquitin chains. Here, we examined the mechanisms whereby K63-polyUb chain regulate MDA5 activation. Only long unanchored K63-polyUbn (n ≥ 8) could mediate tetramerization of the caspase activation and recruitment domains of MDA5 (MDA5CARDs). Cryoelectron microscopy structures of a polyUb13-bound MDA5CARDs tetramer and a polyUb11-bound MDA5CARDs-MAVSCARD assembly revealed a tower-like formation, wherein eight Ubs tethered along the outer rim of the helical shell, bridging MDA5CARDs and MAVSCARD tetramers into proximity. ATP binding and hydrolysis promoted the stabilization of RNA-bound MDA5 prior to MAVS activation via allosteric effects on CARDs-polyUb complex. Abundant ATP prevented basal activation of apo MDA5. Our findings reveal the ordered assembly of a MDA5 signaling complex competent to recruit and activate MAVS and highlight differences with RIG-I in terms of CARD orientation and Ub sensing that suggest different abilities to induce antiviral responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/química , Microscopia Crioeletrônica , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/ultraestrutura , Poliubiquitina/química , Poliubiquitina/metabolismo , Ligação Proteica
8.
Nucleic Acids Res ; 49(17): 9978-9991, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34403472

RESUMO

DRH-3 is critically involved in germline development and RNA interference (RNAi) facilitated chromosome segregation via the 22G-siRNA pathway in Caenorhabditis elegans. DRH-3 has similar domain architecture to RIG-I-like receptors (RLRs) and belongs to the RIG-I-like RNA helicase family. The molecular understanding of DRH-3 and its function in endogenous RNAi pathways remains elusive. In this study, we solved the crystal structures of the DRH-3 N-terminal domain (NTD) and the C-terminal domains (CTDs) in complex with 5'-triphosphorylated RNAs. The NTD of DRH-3 adopts a distinct fold of tandem caspase activation and recruitment domains (CARDs) structurally similar to the CARDs of RIG-I and MDA5, suggesting a signaling function in the endogenous RNAi biogenesis. The CTD preferentially recognizes 5'-triphosphorylated double-stranded RNAs bearing the typical features of secondary siRNA transcripts. The full-length DRH-3 displays unique structural dynamics upon binding to RNA duplexes that differ from RIG-I or MDA5. These features of DRH-3 showcase the evolutionary divergence of the Dicer and RLR family of helicases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , RNA Helicases DEAD-box/metabolismo , Domínios Proteicos/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Proteína DEAD-box 58/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
9.
ACS Med Chem Lett ; 12(5): 732-737, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055219

RESUMO

The rapid generation and modification of macrocyclic peptides in medicinal chemistry is an ever-growing area that can present various synthetic challenges. The reaction between N-terminal cysteine and 2-cyanoisonicotinamide is a new biocompatible click reaction that allows rapid access to macrocyclic peptides. Importantly, 2-cyanoisonicotinamide can be attached to different linkers directly during solid-phase peptide synthesis. The synthesis involves only commercially available precursors, allowing for a fully automated process. We demonstrate the approach for four cyclic peptide ligands of the Zika virus protease NS2B-NS3. Although all peptides display the substrate recognition motif, the activity strongly depends on the linker length, with the shortest cyclization linker corresponding to highest activity (K i = 0.64 µM). The most active cyclic peptide displays affinity 78 times higher than that of its linear analogue. We solved a crystal structure of the proteolytically cleaved ligand and synthesized it by applying the presented chemistry to peptide ligation.

10.
J Virol ; 95(6)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33328310

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for chikungunya fever. Nonstructural protein 2 (nsP2), a multifunctional protein essential for viral replication, has an N-terminal helicase region (nsP2h), which has both nucleotide triphosphatase and RNA triphosphatase activities, as well as a C-terminal cysteine protease region (nsP2p), which is responsible for nonstructural polyprotein processing. The two functional units are connected through a linker of 14 residues. Although crystal structures of the helicase and protease regions of CHIKV nsP2 have been solved separately, the conformational arrangement of the full-length nsP2 and the biological role of the linker remain elusive. Using the small-angle X-ray scattering (SAXS) method, we demonstrated that the full-length nsP2 is elongated and partially folded in solution. The reconstructed model of the structure of nsP2 contains a flexible interdomain linker, and there is no direct interaction between the two structured regions. To examine the function of the interdomain linker, we constructed and characterized a set of CHIKV mutants. The deletion of three or five amino acid residues in the linker region resulted in a modest defect in viral RNA replication and transcription but completely abolished viral infectivity. In contrast, increasing the flexibility of nsP2 by lengthening the interdomain linker increased both genomic RNA replication and viral infectivity. The enzymatic activities of the corresponding mutant proteins were largely unaffected. This work suggests that increasing the interdomain flexibility of nsP2 could facilitate the assembly of the replication complex (RC) with increased efficiency and promote virus production.IMPORTANCE CHIKV nsP2 plays multiple roles in viral RNA replication and virus-host interactions. The helicase and protease regions of nsP2 are connected through a short linker. Here, we determined that the conformation of full-length CHIKV nsP2 is elongated and that the protein is flexible in solution. We also highlight the importance of the flexibility of the interdomain of nsP2 on viral RNA synthesis and infectivity. CHIKV mutants harboring shortened linkers fail to produce infectious virus particles despite showing only relatively mild defects in genomic and subgenomic RNA synthesis. Mutations increasing the length of the interdomain linker have only mild and generally beneficial impacts on virus replication. Thus, our findings link interdomain flexibility with the regulation of viral RNA replication and infectivity of the viral genome.


Assuntos
Vírus Chikungunya/fisiologia , Cisteína Endopeptidases/química , RNA Helicases/química , Proteínas do Complexo da Replicase Viral/química , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Vírus Chikungunya/química , Vírus Chikungunya/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Mutação , Estrutura Terciária de Proteína , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Viral/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Proteínas do Complexo da Replicase Viral/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(46): 28939-28949, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33106404

RESUMO

Bats have emerged as unique mammalian vectors harboring a diverse range of highly lethal zoonotic viruses with minimal clinical disease. Despite having sustained complete genomic loss of AIM2, regulation of the downstream inflammasome response in bats is unknown. AIM2 sensing of cytoplasmic DNA triggers ASC aggregation and recruits caspase-1, the central inflammasome effector enzyme, triggering cleavage of cytokines such as IL-1ß and inducing GSDMD-mediated pyroptotic cell death. Restoration of AIM2 in bat cells led to intact ASC speck formation, but intriguingly resulted in a lack of caspase-1 or consequent IL-1ß activation. We further identified two residues undergoing positive selection pressures in Pteropus alecto caspase-1 that abrogate its enzymatic function and are crucial in human caspase-1 activity. Functional analysis of another bat lineage revealed a targeted mechanism for loss of Myotis davidii IL-1ß cleavage and elucidated an inverse complementary relationship between caspase-1 and IL-1ß, resulting in overall diminished signaling across bats of both suborders. Thus we report strategies that additionally undermine downstream inflammasome signaling in bats, limiting an overactive immune response against pathogens while potentially producing an antiinflammatory state resistant to diseases such as atherosclerosis, aging, and neurodegeneration.


Assuntos
Caspase 1/metabolismo , Quirópteros/imunologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Animais , Quirópteros/genética , Citocinas/metabolismo , DNA , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Inflamassomos/metabolismo , Macrófagos/metabolismo , Piroptose , Transdução de Sinais
12.
mBio ; 11(5)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994320

RESUMO

Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection.


Assuntos
Membrana Externa Bacteriana/efeitos dos fármacos , Fibrose Cística/complicações , Hormônios Esteroides Gonadais/metabolismo , Pseudomonas aeruginosa/patogenicidade , Estresse Fisiológico/efeitos dos fármacos , Alginatos/metabolismo , Animais , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Estradiol/química , Estradiol/farmacologia , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pseudomonas aeruginosa/genética , Fatores Sexuais , Testosterona/química , Testosterona/farmacologia , Virulência
13.
ACS Pharmacol Transl Sci ; 3(4): 720-736, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832873

RESUMO

We describe a cysteine-rich, membrane-penetrating, joint-targeting, and remarkably stable peptide, EgK5, that modulates voltage-gated KV1.3 potassium channels in T lymphocytes by a distinctive mechanism. EgK5 enters plasma membranes and binds to KV1.3, causing current run-down by a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. EgK5 exhibits selectivity for KV1.3 over other channels, receptors, transporters, and enzymes. EgK5 suppresses antigen-triggered proliferation of effector memory T cells, a subset enriched among pathogenic autoreactive T cells in autoimmune disease. PET-CT imaging with 18F-labeled EgK5 shows accumulation of the peptide in large and small joints of rodents. In keeping with its arthrotropism, EgK5 treats disease in a rat model of rheumatoid arthritis. It was also effective in treating disease in a rat model of atopic dermatitis. No signs of toxicity are observed at 10-100 times the in vivo dose. EgK5 shows promise for clinical development as a therapeutic for autoimmune diseases.

14.
ChemMedChem ; 15(15): 1439-1452, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501637

RESUMO

A series of cyclic active-site-directed inhibitors of the NS2B-NS3 proteases from Zika (ZIKV), West Nile (WNV), and dengue-4 (DENV4) viruses has been designed. The most potent compounds contain a reversely incorporated d-lysine residue in the P1 position. Its side chain is connected to the P2 backbone, its α-amino group is converted into a guanidine to interact with the conserved Asp129 side chain in the S1 pocket, and its C terminus is connected to the P3 residue via different linker segments. The most potent compounds inhibit the ZIKV protease with Ki values <5 nM. Crystal structures of seven ZIKV protease inhibitor complexes were determined to support the inhibitor design. All the cyclic compounds possess high selectivity against trypsin-like serine proteases and furin-like proprotein convertases. Both WNV and DENV4 proteases are inhibited less efficiently. Nonetheless, similar structure-activity relationships were observed for these enzymes, thus suggesting their potential application as pan-flaviviral protease inhibitors.


Assuntos
Compostos Macrocíclicos/farmacologia , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus da Dengue/enzimologia , Relação Dose-Resposta a Droga , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/química , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia , Zika virus/enzimologia
15.
FEBS Lett ; 593(21): 3003-3014, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31369683

RESUMO

The cytoplasmic immune sensor RIG-I detects viral RNA and initiates an antiviral immune response upon activation. It has become a potential target for vaccination and immunotherapies. To develop the smallest but potent immunomodulatory RNA (immRNAs) species, we performed structure-guided RNA design and used biochemical, structural, and cell-based methods to select and characterize the immRNAs. We demonstrated that inserting guanosine at position 9 to the 10mer RNA hairpin (3p10LG9) activates RIG-I more robustly than the parental RNA. 3p10LG9 interacts strongly with the RIG-I helicase-CTD RNA sensing module and disrupts the auto-inhibitory interaction between the HEL2i and CARDs domains. We further showed that 3p10LA9 has a stronger cellular activity than 3p10LG9. Collectively, purine insertion at position 9 of the immRNA species triggered more robust activation of RIG-1.


Assuntos
Proteína DEAD-box 58/química , Proteína DEAD-box 58/metabolismo , RNA Interferente Pequeno/farmacologia , RNA Viral/imunologia , Substituição de Aminoácidos , Citosina/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Ligação Proteica , Domínios Proteicos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Receptores Imunológicos , Transdução de Sinais , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 180: 536-545, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31344613

RESUMO

Zika virus (ZIKV) infection recently resulted in an international health emergency the Americas in and despite its high profile there is currently no approved treatment for ZIKV infection with millions of people being at risk. ZIKV is a member of Flaviviridae family which includes prominent members such as dengue virus (DENV) and West Nile virus (WNV). One of the best validated targets for developing anti-flaviviral treatment for DENV and WNV infection is the NS2B/NS3 protease. However the inhibitors reported to date have shown limited promise for further clinical development largely due to poor cellular activity. Prompted by the conserved nature of the viral NS2B/NS3 protease across flaviviruses, we envisaged that small molecule inhibitors of the ZIKVpro may be developed by applying rational design on previously reported scaffolds with demonstrated activity against other flaviviral proteases. Starting with an earlier WNVpro hit we performed a scaffold hopping exercise and discovered that certain carbazole derivatives bearing amidine groups possessed submicromolar potency and significant cellular activity against ZIKV. We successfully addressed various issues with the synthesis of novel N-substituted carbazole-based amidines thus permitting a targeted SAR campaign. The in vitro biochemical and cell-based inhibitory profiles exhibited by the lead molecule described in this work (ZIKVpro IC50 0.52 µM, EC50 1.25 µM), is among the best reported to date. Furthermore, these molecules possess capacity for further optimization of pharmacokinetics and may evolve to broad spectrum flaviviral protease inhibitors.


Assuntos
Antivirais/farmacologia , Carbazóis/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Zika virus/enzimologia , Antivirais/química , Carbazóis/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/química , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , Serina Endopeptidases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
17.
Org Lett ; 21(12): 4709-4712, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31188009

RESUMO

Peptides featuring an N-terminal cysteine residue and the unnatural amino acid 3-(2-cyano-4-pyridyl)alanine (Cpa) cyclize spontaneously in aqueous solution at neutral pH. Cpa is readily available and easily introduced into peptides using standard solid-phase peptide synthesis. The reaction is orthogonal to all proteinogenic amino acids, including cysteine residues that are not at the N-terminus. A substrate peptide of the Zika virus NS2B-NS3 protease cyclized in this way produced an inhibitor of high affinity and proteolytic stability.


Assuntos
Materiais Biocompatíveis/farmacologia , Cisteína/farmacologia , Peptídeos/antagonistas & inibidores , Pirimidinas/farmacologia , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Ciclização , Cisteína/química , Estrutura Molecular , Pirimidinas/química , RNA Helicases/química , Serina Endopeptidases/química , Proteínas não Estruturais Virais/química , Zika virus/enzimologia
18.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043531

RESUMO

Virus-derived double-stranded RNA (dsRNA) molecules containing a triphosphate group at the 5' end are natural ligands of retinoic acid-inducible gene I (RIG-I). The cellular pathways and proteins induced by RIG-I are an essential part of the innate immune response against viral infections. Starting from a previously published RNA scaffold (3p10L), we characterized an optimized small dsRNA hairpin (called 3p10LG9, 25 nucleotides [nt] in length) as a highly efficient RIG-I activator. Dengue virus (DENV) infection in cell lines and primary human skin cells could be prevented and restricted through 3p10LG9-mediated activation of RIG-I. This antiviral effect was RIG-I and interferon signal dependent. The effect was temporary and was reversed above a saturating concentration of RIG-I ligand. This finding revealed an effective feedback loop that controls potentially damaging inflammatory effects of the RIG-I response, at least in immune cells. Our results show that the small RIG-I activator 3p10LG9 can confer short-term protection against DENV and can be further explored as an antiviral treatment in humans.IMPORTANCE Short hairpin RNA ligands that activate RIG-I induce antiviral responses in infected cells and prevent or control viral infections. Here, we characterized a new short hairpin RNA molecule with high efficacy in antiviral gene activation and showed that this molecule is able to control dengue virus infection. We demonstrate how structural modifications of minimal RNA ligands can lead to increased potency and a wider window of RIG-I-activating concentrations before regulatory mechanisms kick in at high concentrations. We also show that minimal RNA ligands induce an effective antiviral response in human skin dendritic cells and macrophages, which are the target cells of initial infection after the mosquito releases virus into the skin. Using short hairpin RNA as RIG-I ligands could therefore be explored as antiviral therapy.


Assuntos
Antivirais , Vírus da Dengue/imunologia , Dengue/tratamento farmacológico , RNA de Cadeia Dupla , Pele/imunologia , Antivirais/química , Antivirais/farmacologia , Células Cultivadas , Proteína DEAD-box 58 , Dengue/imunologia , Dengue/patologia , Humanos , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/farmacologia , Receptores Imunológicos , Pele/patologia , Pele/virologia
19.
Proc Natl Acad Sci U S A ; 116(19): 9558-9567, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31000599

RESUMO

Chikungunya virus (CHIKV) is transmitted to humans through mosquitoes and causes Chikungunya fever. Nonstructural protein 2 (nsP2) exhibits the protease and RNA helicase activities that are required for viral RNA replication and transcription. Unlike for the C-terminal protease, the structure of the N-terminal RNA helicase (nsP2h) has not been determined. Here, we report the crystal structure of the nsP2h bound to the conserved 3'-end 14 nucleotides of the CHIKV genome and the nonhydrolyzable transition-state nucleotide analog ADP-AlF4 Overall, the structural analysis revealed that nsP2h adopts a uniquely folded N-terminal domain followed by a superfamily 1 RNA helicase fold. The conserved helicase motifs establish polar contacts with the RNA backbone. There are three hydrophobic residues (Y161, F164, and F287) which form stacking interactions with RNA bases and thereby bend the RNA backbone. An F287A substitution that disrupted these stacking interactions increased the basal ATPase activity but decreased the RNA binding affinity. Furthermore, the F287A substitution reduced viral infectivity by attenuating subgenomic RNA synthesis. Replication of the mutant virus was restored by pseudoreversion (A287V) or adaptive mutations in the RecA2 helicase domain (T358S or V410I). Y161A and/or F164A substitutions, which were designed to disrupt the interactions with the RNA molecule, did not affect the ATPase activity but completely abolished the replication and transcription of viral RNA and the infectivity of CHIKV. Our study sheds light on the roles of the RNA helicase region in viral replication and provides insights that might be applicable to alphaviruses and other RNA viruses in general.


Assuntos
Difosfato de Adenosina/análogos & derivados , Vírus Chikungunya/química , Compostos Organometálicos/química , RNA Helicases/química , RNA Viral/química , Proteínas Virais/química , Difosfato de Adenosina/química , Vírus Chikungunya/metabolismo , Domínios Proteicos , RNA Helicases/metabolismo , RNA Viral/biossíntese , Proteínas Virais/metabolismo
20.
Antiviral Res ; 160: 17-24, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315877

RESUMO

Zika virus NS2B-NS3 protease plays an essential role in viral replication by processing the viral polyprotein into individual proteins. The viral protease is therefore considered as an ideal antiviral drug target. To facilitate the development of protease inhibitors, we report three high-resolution co-crystal structures of bZiPro with peptidomimetic inhibitors composed of a P1-P4 segment and different P1' residues. Compounds 1 and 2 possess small P1' groups that are split off by bZiPro, which could be detected by mass spectrometry. On the other hand, the more potent compound 3 contains a bulky P1' benzylamide structure that is resistant to cleavage by bZiPro, demonstrating that presence of an uncleavable C-terminal cap contributes to a slightly improved inhibitory potency. The N-terminal phenylacetyl residue occupies a position above the P1 side chain and therefore stabilizes a horseshoe-like backbone conformation of the bound inhibitors. The P4 moieties show unique intra- and intermolecular interactions. Our work reports the detailed binding mode interactions of substrate-analogue inhibitors within the S4-S1' pockets and explains the preference of bZiPro for basic P1-P3 residues. These new structures of protease-inhibitor complexes will guide the design of more effective NS2B-NS3 protease inhibitors with improved potency and bioavailability.


Assuntos
Peptidomiméticos/química , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Zika virus/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Peptidomiméticos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA