Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605226

RESUMO

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Assuntos
Células-Tronco Hematopoéticas , Metiltransferases , Metilação de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição , Peixe-Zebra , Animais , Humanos , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Metilação de RNA/genética
2.
Genomics Proteomics Bioinformatics ; 19(6): 873-881, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34839012

RESUMO

Sex reversal, representing extraordinary sexual plasticity during the life cycle, not only triggers reproduction in animals but also affects reproductive and endocrine system-related diseases and cancers in humans. Sex reversal has been broadly reported in animals; however, an integrated resource hub of sex reversal information is still lacking. Here, we constructed a comprehensive database named ASER (Animal Sex Reversal) by integrating sex reversal-related data of 18 species from teleostei to mammalia. We systematically collected 40,018 published papers and mined the sex reversal-associated genes (SRGs), including their regulatory networks, from 1611 core papers. We annotated homologous genes and computed conservation scores for whole genomes across the 18 species. Furthermore, we collected available RNA-seq datasets and investigated the expression dynamics of SRGs during sex reversal or sex determination processes. In addition, we manually annotated 550 in situ hybridization (ISH), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC) images of SRGs from the literature and described their spatial expression in the gonads. Collectively, ASER provides a unique and integrated resource for researchers to query and reuse organized data to explore the mechanisms and applications of SRGs in animal breeding and human health. The ASER database is publicly available at http://aser.ihb.ac.cn/.


Assuntos
Genoma , Reprodução , Animais , Humanos , Hibridização in Situ Fluorescente , Reprodução/genética
3.
Nucleic Acids Res ; 49(4): 2027-2043, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33476374

RESUMO

Dysfunction of splicing factors often result in abnormal cell differentiation and apoptosis, especially in neural tissues. Mutations in pre-mRNAs processing factor 31 (PRPF31) cause autosomal dominant retinitis pigmentosa, a progressive retinal degeneration disease. The transcriptome-wide splicing events specifically regulated by PRPF31 and their biological roles in the development and maintenance of retina are still unclear. Here, we showed that the differentiation and viability of retinal progenitor cells (RPCs) are severely perturbed in prpf31 knockout zebrafish when compared with other tissues at an early embryonic stage. At the cellular level, significant mitotic arrest and DNA damage were observed. These defects could be rescued by the wild-type human PRPF31 rather than the disease-associated mutants. Further bioinformatic analysis and experimental verification uncovered that Prpf31 deletion predominantly causes the skipping of exons with a weak 5' splicing site. Moreover, genes necessary for DNA repair and mitotic progression are most enriched among the differentially spliced events, which may explain the cellular and tissular defects in prpf31 mutant retinas. This is the first time that Prpf31 is demonstrated to be essential for the survival and differentiation of RPCs during retinal neurogenesis by specifically modulating the alternative splicing of genes involved in DNA repair and mitosis.


Assuntos
Processamento Alternativo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Retina/embriologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Apoptose , Sistemas CRISPR-Cas , Sobrevivência Celular , Dano ao DNA , Reparo do DNA , Éxons , Técnicas de Inativação de Genes , Pontos de Checagem da Fase M do Ciclo Celular , Células-Tronco Neurais/citologia , Neurônios Retinianos/citologia , Neurônios Retinianos/metabolismo , Fuso Acromático/ultraestrutura , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Mol Cell Endocrinol ; 513: 110858, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413385

RESUMO

Kisspeptin2 is a neuropeptide widely found in the brain and multiple peripheral tissues in the zebrafish. The pituitary is the center of synthesis and secretes various endocrine hormones. However, Kiss2 innervation in the zebrafish pituitary is unknown. In this study, the organization of Kiss2 cells and structures in the zebrafish pituitary by promoter-driving mCherry-labeling Kiss2 neurons were investigated. Kiss2 neurons in the hypothalamus do not project into the pituitary. Kiss2 cells are found in the female pituitary. Unidentified Kiss2 cells and extensions are located in the proximal pars distalis (PPD), similar to the distribution of Gnrh3 fibers. Kiss2 structures reside alongside Gnrh3 fibers. No Kiss2 structures are found in the male pituitary. The transcriptional expression of the kisspeptin receptor kiss1rb is detected in both female and male pituitaries. In situ hybridization shows that kiss1rb-positive cells are located in the PPD and pars intermedia (PI). In vitro Kiss2-10 treatment stimulates Akt and Erk phosphorylation and significantly induces lhß, fshß, and prl1 mRNA expression in the female pituitary. The results in this study suggest that Kiss2 and Kiss1rb may form an independent paracrine or autocrine system in the female zebrafish pituitary. Kiss2 and Kiss1rb signaling regulates the expression of pituitary hormones.


Assuntos
Kisspeptinas/fisiologia , Hipófise/metabolismo , Hormônios Hipofisários/genética , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Células Cultivadas , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Regulação da Expressão Gênica , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Hormônios Hipofisários/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Cell ; 178(1): 107-121.e18, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31251911

RESUMO

Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Transcrição Gênica/genética , Fator de Transcrição YY1/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Genoma Humano/genética , Células Hep G2 , Humanos , Células K562 , Proteínas Nucleares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , RNA-Seq , Transcriptoma , Fator de Transcrição YY1/genética
6.
J Endocrinol ; 242(1): M17-M32, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141788

RESUMO

Prenatal caffeine exposure (PCE) can induce testicular developmental toxicity. Here, we aimed to explore the underlying mechanism of this process in reference to its intrauterine origin. Pregnant rats were intragastrically administrated caffeine (30 and 120 mg/kg/day) from gestational days 9 to 20. The results showed that the male fetuses exposed to high dose of caffeine (120 mg/kg/day) had a decreased bodyweight and inhibited testosterone synthetic function. Meanwhile, their serum corticosterone concentration was elevated and their testicular insulin-like growth factor 1 (Igf1) expression was decreased. Moreover, the histone 3 lysine 14 acetylation (H3K14ac) level in the Igf1 promoter region was reduced. Low-dose (30 mg/kg/day) caffeine exposure, however, increased steroidogenic enzymes expression in male fetuses. After birth, the serum corticosterone concentration gradually decreased in the PCE (120 mg/kg/day) offspring rats, whereas the expression and H3K14ac level of Igf1 gradually increased, with obvious catch-up growth and testicular development compensation. Intriguingly, when we subjected the offspring to 2 weeks of chronic stress to elevate the serum corticosterone concentration, the expression of Igf1 and testosterone synthesis were inhibited again in the PCE (120 mg/kg/day) group, accompanied by a decrease in the H3K14ac level in the Igf1 promoter region. In vitro, corticosterone (rather than caffeine) was proved to inhibit testosterone production in Leydig cells by altering the H3K14ac level and the expression of Igf1. These observations suggested that PCE-induced testicular developmental toxicity is related to the negative regulation of corticosterone on H3K14ac levels and the expression of Igf1.


Assuntos
Cafeína/toxicidade , Glucocorticoides/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Testículo/metabolismo , Testículo/patologia , Animais , Feminino , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Testículo/efeitos dos fármacos , Testosterona/metabolismo
7.
Blood ; 133(8): 805-815, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30482793

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium via the endothelial-to-hematopoietic transition, are self-renewing, and replenish all lineages of blood cells throughout life. BCAS2 (breast carcinoma amplified sequence 2) is a component of the spliceosome and is involved in multiple biological processes. However, its role in hematopoiesis remains unknown. We established a bcas2 knockout zebrafish model by using transcription activator-like effector nucleases. The bcas2 -/- zebrafish showed severe impairment of HSPCs and their derivatives during definitive hematopoiesis. We also observed significant signs of HSPC apoptosis in the caudal hematopoietic tissue of bcas2 -/- zebrafish, which may be rescued by suppression of p53. Furthermore, we show that the bcas2 deletion induces an abnormal alternative splicing of Mdm4 that predisposes cells to undergo p53-mediated apoptosis, which provides a mechanistic explanation of the deficiency observed in HSPCs. Our findings revealed a novel and vital role for BCAS2 during HSPC maintenance in zebrafish.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Técnicas de Silenciamento de Genes , Proteínas de Neoplasias/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
8.
Endocrinology ; 159(3): 1401-1415, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370380

RESUMO

Prenatal dexamethasone exposure (PDE) induces multiorgan developmental toxicities in offspring. Here we verified the transgenerational inheritance effect of ovarian developmental toxicity by PDE and explored its intrauterine programming mechanism. Pregnant rats subcutaneously received 0.2 mg/kg/d dexamethasone from gestational day (GD) 9 to GD20. A subgroup was euthanized for fetuses on GD20, and the other group went on to spontaneous labor to produce F1 offspring. The adult F1 females were mated with normal males to produce the F2 and F3 generations. The PDE fetal rats exhibited ovarian mitochondrial structural abnormalities, decreased serum estradiol (E2) levels, and lower expression levels of ovarian steroidogenic factor 1 (SF1), steroidal synthetases, and insulinlike growth factor 1 (IGF1). On postnatal week (PW) 6 and PW12, the PDE F1 offspring showed altered reproductive behavior and ovarian morphology. The serum E2 level and ovarian expression of SF1, steroidal synthetases, and IGF1 were also decreased. The adult F3 offspring showed alterations in reproductive phenotype and ovarian IGF1, SF1, and steroidal synthetase expression similar to those of F1. PDE induces ovarian developmental toxicity and transgenerational inheritance effects. The mechanism by which this toxicity occurs may be related to PDE-induced low-functional programming of fetal ovarian IGF1/SF1 and steroidal synthetases.


Assuntos
Dexametasona/toxicidade , Ovário/efeitos dos fármacos , Ovário/embriologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Dexametasona/sangue , Estradiol/sangue , Feminino , Sangue Fetal/química , Fator de Crescimento Insulin-Like I/análise , Masculino , Mitocôndrias/patologia , Ovário/química , Linhagem , Fenótipo , Gravidez , Ratos , Ratos Wistar , Reprodução/efeitos dos fármacos , Organismos Livres de Patógenos Específicos , Fator Esteroidogênico 1/análise , Esteroides/biossíntese
9.
Ultrastruct Pathol ; 39(5): 324-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26107819

RESUMO

This study aimed at analyzing the cytotoxicity and pathological effects of cadmium on the ovary. Our studies revealed that cadmium was deposited in the mouse ovary after 8 d cadmium injection in vivo. Also, the increase in the rate of body weight was slowed, while the gonadosomatic index was reduced in the CdCl2 group, compared with the control group. Meanwhile, cadmium affected the maturation of follicles, the degradation of corpus luteum, the arrangement of follicles and corpus luteum, and increased the number of atresia follicles. Besides, under the electron microscope, chromatin margination, karopyknosis, swelling of mature cisternae of Golgi apparatus, mitochondrial cristae disappearance, and swelling of the rough endoplasmic reticulum can be observed in the CdCl2 group mice. Collectively, our findings elucidated the morphological mechanism that the exposure of cadmium changed the ultrastructure of cells in ovary tissues.


Assuntos
Cádmio/toxicidade , Ovário/efeitos dos fármacos , Ovário/patologia , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Camundongos , Microscopia Eletrônica de Transmissão , Espectrofotometria Atômica
10.
Endocrinology ; 156(2): 589-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25406015

RESUMO

The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.


Assuntos
Kisspeptinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Reprodução , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Técnicas de Inativação de Genes , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Maturidade Sexual , Proteínas de Peixe-Zebra/genética
11.
Fish Shellfish Immunol ; 32(6): 1022-31, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22554574

RESUMO

Toll-like receptor 22 (TLR22) is a fish-specific TLR which recognizes double-strand (ds) RNA and participates in the innate immune response through the Toll-IL-1R homology domain-containing adaptor protein 1 (TICAM-1). To further investigate how the innate immune system of teleosts responds to viral infections, we cloned the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) TLR22 (CiTLR22). The complete cDNA sequence of CiTLR22 was 3647 bp and encodes a polypeptide of 954 amino acids. Analysis of the deduced amino acid sequence indicated that CiTLR22 has typical structural features of proteins belonging to the TLR family. These included 17 LRR domains (residues 88-634) and one C-terminal LRR domain (LRR-CT, residues 694-745) in the extracellular region, and a TIR domain (residues 801-944) in the cytoplasmic region. Comparison with homologous proteins showed that the deduced CiTLR22 has the highest sequence identity to common carp TLR22 (82.9%). Genomic DNA of CiTLR22 was obtained by long-distance (Ld) PCR and structure analysis revealed that the CiTLR22 gene is encoded by uninterrupted exons. Reverse transcriptase-PCR (RT-PCR) revealed that CiTLR22 is a non-maternal gene. It is prominently expressed in immune relevant tissues such as spleen and head kidney. Quantitative RT-PCR analysis showed that CiTLR22 transcripts were upregulated significantly in immune relevant tissues and blood following grass carp reovirus (GCRV) infection. In the whole genomic sequence, nine single nucleotide polymorphisms (SNPs) were detected. Seven of them were sited in the coding region, and the other two located in the 5' and 3' untranslated region (UTR) respectively. None of the SNPs was associated with the resistance of grass carp to GCRV. These results suggested a role for CiTLR22 in mediating immune protection against viral infection in grass carp.


Assuntos
Carpas/genética , Carpas/metabolismo , Regulação da Expressão Gênica , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Carpas/embriologia , Clonagem Molecular , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Receptores Toll-Like/química , Receptores Toll-Like/imunologia
12.
DNA Cell Biol ; 31(6): 1078-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22320863

RESUMO

Metastasis is the leading cause of death in breast cancer patients. Recent evidence suggests that inflammation-related cytokine tumor necrosis factor-alpha (TNF-α) is implicated in tumor invasion and metastasis, but the mechanism of its involvement remains elusive. In this study, we employed MCF-7 breast cancer cells as an experimental model to demonstrate that TNF-α inhibits breast cancer cell adhesion and cell proliferation through hypoxia inducible factor-1alpha (HIF-1α) mediated suppression of vasodilator-stimulated phosphoprotein (VASP). We observed that TNF-α treatment attenuated the adhesion and proliferation of MCF-7 cells it also dramatically increased HIF-1α expression and decreased VASP expression. Through a variety of approaches, including promoter assay, electrophoretic mobility shift assay (EMSA), and chromatin immunoprecipitation (ChIP), we identified VASP as a direct target gene of HIF-1α. In addition, we confirmed that HIF-1α mediated the repression of VASP expression by TNF-α in MCF-7 cells. We also demonstrated that exogenous VASP expression or knockdown of HIF-1α relieved TNF-α induced inhibition of cell adhesion and proliferation. We identified a novel TNF-α/HIF-1α/VASP axis in which HIF-1α acts downstream of TNF-α to inhibit VASP expression and modulate the adhesion and proliferation of breast cancer cells. These data provide new insight into the potential anti-tumor effects of TNF-α.


Assuntos
Neoplasias da Mama/patologia , Moléculas de Adesão Celular/genética , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Fator de Necrose Tumoral alfa/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Transcrição Gênica/genética
13.
Eur J Cancer ; 48(12): 1904-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22189055

RESUMO

Vasodilator-stimulated phosphoprotein (VASP) has been implicated in the establishment of cancerous phenotypes. However, the role of VASP in gastric cancer progression and metastasis remains poorly understood. Here, we demonstrated that VASP was upregulated by epidermal growth factor (EGF) and promoted the migration and invasion of gastric cancer cells. Then we explored the regulatory mechanisms responsible for high expression of VASP in gastric cancer. Based on miRNA expression profiling of the paired gastric cancer tissues and their adjacent non-tumour gastric tissues 18 miRNAs were identified including microRNA-610 (miR-610) which were down-regulated in gastric cancer. Next, we observed an inverse correlation between VASP and miR-610 expression levels in gastric cancer cells after EGF stimulation. Then we performed bioinformatics analysis, Western blot and reverse transcription polymerase chain reaction (RT-PCR) analysis and luciferase assay to establish that miR-610 directly targets VASP 3'-UTR and inhibits its expression. Functionally, we demonstrated that miR610-mediated inhibition of VASP expression resulted in a significant reduction in the migration and invasion properties of gastric cancer cells. The identification of miR-610 as a novel miRNA regulated by EGF that targets VASP in gastric cancer cells suggests that EGF-miR610-VASP axis may be exploited for therapeutic intervention to inhibit gastric cancer progression and metastasis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , MicroRNAs/fisiologia , Proteínas dos Microfilamentos/metabolismo , Invasividade Neoplásica/genética , Fosfoproteínas/metabolismo , Neoplasias Gástricas/genética , Sequência de Bases , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Fator de Crescimento Epidérmico/farmacologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Proteínas dos Microfilamentos/genética , Fosfoproteínas/genética , Regulação para Cima
14.
PLoS One ; 6(6): e21057, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21695218

RESUMO

BACKGROUND: The hypothalamic-pituitary-gonadal (HPG) axis is critical in the development and regulation of reproduction in fish. The inhibition of neuropeptide gonadotropin-releasing hormone (GnRH) expression may diminish or severely hamper gonadal development due to it being the key regulator of the axis, and then provide a model for the comprehensive study of the expression patterns of genes with respect to the fish reproductive system. METHODOLOGY/PRINCIPAL FINDINGS: In a previous study we injected 342 fertilized eggs from the common carp (Cyprinus carpio) with a gene construct that expressed antisense sGnRH. Four years later, we found a total of 38 transgenic fish with abnormal or missing gonads. From this group we selected the 12 sterile females with abnormal ovaries in which we combined suppression subtractive hybridization (SSH) and cDNA microarray analysis to define changes in gene expression of the HPG axis in the present study. As a result, nine, 28, and 212 genes were separately identified as being differentially expressed in hypothalamus, pituitary, and ovary, of which 87 genes were novel. The number of down- and up-regulated genes was five and four (hypothalamus), 16 and 12 (pituitary), 119 and 93 (ovary), respectively. Functional analyses showed that these genes involved in several biological processes, such as biosynthesis, organogenesis, metabolism pathways, immune systems, transport links, and apoptosis. Within these categories, significant genes for neuropeptides, gonadotropins, metabolic, oogenesis and inflammatory factors were identified. CONCLUSIONS/SIGNIFICANCE: This study indicated the progressive scaling-up effect of hypothalamic sGnRH antisense on the pituitary and ovary receptors of female carp and provided comprehensive data with respect to global changes in gene expression throughout the HPG signaling pathway, contributing towards improving our understanding of the molecular mechanisms and regulative pathways in the reproductive system of teleost fish.


Assuntos
Carpas/genética , Perfilação da Expressão Gênica , Hormônio Liberador de Gonadotropina/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Ovário/metabolismo , RNA Antissenso/genética , Animais , Animais Geneticamente Modificados , Carpas/sangue , Carpas/crescimento & desenvolvimento , Carpas/fisiologia , Feminino , Hormônio Luteinizante Subunidade beta/sangue , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/crescimento & desenvolvimento , Ovário/fisiologia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA