Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(40): 47531-47540, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37787377

RESUMO

Polypropylene (PP) has been widely used in health care and food packaging fields, however, it lacks antibacterial properties. Herein, we prepared the polymeric antibacterial agents (MPP-NDAM) by an in situ amidation reaction between 2,4-diamino-6-dialkylamino-1,3,5-triazine (NDAM) and maleic anhydride grafted polypropylene (MPP) using the melt grafting method. The effects of reaction time and monomer content on the grafting degree of N-halamine were investigated, and a grafting degree of 4.86 wt % was achieved under the optimal reaction conditions. PP/MPP-NDAM composites were further obtained by a melt blending process between PP and MPP-NDAM. With the adoption of surface segregation technology, the content of N-halamine structure on the surface of PP/MPP-NDAM composites was significantly increased. The antibacterial tests showed that the PP/MPP-NDAM composite could achieve 99.9% bactericidal activity against 1.0 × 107 CFU/mL of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 10 and 5 min of contact, respectively. The antibacterial effect became more pronounced with the prolongation of chlorinated time, and it could achieve 99.9% bactericidal activity against E. coli within merely 1 min of contact.


Assuntos
Escherichia coli , Polipropilenos , Polipropilenos/química , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
2.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295436

RESUMO

It is well known that ultraviolet (UV) and blue light cause a series of health problems and damages to polymer materials. Therefore, there are increasing demands for UV-blue light-shielding. Herein, a new type of iron-doped titania (Fe-TiO2) nanoparticle was synthesized. Fe-TiO2 nanoparticles with small particle size (ca. 10 nm) are composed of anatase and brookite. The iron element is incorporated into the lattice of titania and forms a hematite phase (α-Fe2O3). The iron doping imparted full-band UV and blue light absorption to Fe-TiO2 nanoparticles, and greatly suppressed the photocatalytic activity. The prepared Fe-TiO2/polyurethane (PU) films exhibited prominent UV-blue light-shielding performance and high transparency, which showed great potential in light-shielding fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA