Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 128: 111497, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241842

RESUMO

Sepsis is recognized as a potentially fatal condition characterized by acute organ dysfunction resulting from an imbalanced immune response to infection. Acute liver injury (ALI) arises as an inflammatory outcome of immune response dysregulation associated with sepsis. Kupffer cells, which are liver-specific macrophages, are known to have a significant impact on ALI, although the precise regulatory mechanism remains unclear. Numerous studies have showcased the regulatory impact of long non-coding RNAs (lncRNAs) on the progression of diverse ailments, yet their precise regulatory mechanisms remain predominantly unexplored. In this study, a novel long non-coding RNA (lncRNA), referred to as lncRNA 220, was discovered using high-throughput sequencing. The expression of lncRNA 220 was found to be significantly elevated in the livers of mice with lipopolysaccharide (LPS)-induced endotoxemia, specifically during the 8-hour time period. Furthermore, in Kupffer cells treated with LPS, lncRNA 220 was observed to inhibit apoptosis and autophagy by activating the PI3K-AKT-mTORC1 pathway. This effect was achieved through the reduction of X-box protein 1 unspliced (Xbp1u) mRNA stability and suppression of its translation in the context of endoplasmic reticulum stress (ERS). Ultimately, this intervention mitigated the progression of LPS-induced ALI. To summarize, our study establishes lncRNA 220 as a newly identified regulator that suppresses apoptosis and autophagy in Kupffer cells subjected to LPS treatment, indicating its potential as a molecular target for ALI in endotoxemic mice.


Assuntos
Endotoxemia , RNA Longo não Codificante , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , RNA Longo não Codificante/genética , Lipopolissacarídeos , Fosfatidilinositol 3-Quinases/metabolismo , Células de Kupffer/metabolismo , Autofagia , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA