Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Br J Haematol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685577

RESUMO

Multiple myeloma (MM) is an incurable plasma cell cancer in the bone marrow. Immunomodulatory drugs, such as lenalidomide (LEN) and pomalidomide, are backbone agents in MM treatment, and LEN resistance is commonly seen in the MM clinic. In this study, we presented that heterogeneous nuclear ribonucleoprotein U (hnRNPU) affected MM resistance to LEN via the regulation of target mRNA translation. hnRNPULow MM cells exhibited upregulated CRBN and IKZF1 proteins, stringent IKZF1/3 protein degradation upon LEN addition and increased sensitivity to LEN. RNA pulldown assays and RNA electrophoretic mobility shift assays revealed that hnRNPU bound to the 3'-untranslated region of CRBN and IKZF1 mRNA. A sucrose gradient assay suggested that hnRNPU specifically regulated CRBN and IKZF1 mRNA translation. The competition of hnRNPU binding to its target mRNAs by small RNAs with hnRNPU-binding sites restored MM sensitivity to LEN. hnRNPU function in vivo was confirmed in an immunocompetent MM mouse model constructed by the inoculation of Crbn-humanized murine 5TGM1 cells into CrbnI391V/+ mice. Overall, this study suggests a novel mechanism of LEN sensitivity in which hnRNPU represses CRBN and IKZF1 mRNA translation.

2.
MycoKeys ; 102: 267-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463693

RESUMO

Species of Grifola are famous edible mushrooms and are deeply loved by consumers around the world. Most species of this genus have been described and recorded in Oceania, Europe and South America, with only Grifolafrondosa being recorded in Asia. In this study, two novel species of Grifola from southwestern China (Asia) are introduced. Macro and micromorphological characters are described. Grifolaedulissp. nov. present medium-size basidiomata with gray to gray-brown lobes upper surface, mostly tibiiform or narrowly clavate, rarely narrowly lageniform or ellipsoid chlamydospores, cuticle hyphae terminal segments slightly enlarged. Grifolasinensissp. nov. has white to grayish white lobes upper surface, mostly ellipsoid, rarely narrowly utriform chlamydospores, and broadly ellipsoid to ellipsoid basidiospores (4.6-7.9 × 3.0-5.9 µm). The two new species are supported by phylogenetic analyses of combined nuclear rDNA internal transcribed spacer ITS1-5.8S-ITS2 rDNA (ITS) and ß-tubulin (TUBB). Moreover, the genetic distance between TUBB sequences of those specimen from GenBank was 1.76-1.9%. Thus, the conspecificity relationship of our specimens remains uncertain, and further specimens are required to conclusively confirm its identity.

3.
Cancer Lett ; 580: 216486, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984724

RESUMO

Multiple myeloma (MM) is an incurable haematological cancer. Selinexor is the first-in-class selective inhibitor of nuclear export (SINE) and was newly approved for the treatment of MM. Until now, very few studies have investigated selinexor resistance in MM. Heterogeneous nuclear ribonucleoprotein U (hnRNPU) is an RNA-binding protein and a component of hnRNP complexes. Here we found that hnRNPU regulates MM sensitivity to selinexor. Cell apoptosis assays were performed to compare selinexor-induced cell death in control knockdown (CTR-KD) and hnRNPU knockdown (hnR-KD) MM cells. HnRNPU knockdown-induced nuclear protein retention was examined by proteomics array. HnRNPU-conferred mRNA translation regulation was evaluated by sucrose gradient assay, RNA electrophoresis mobility shift assay, and RNA pull-down assay. We found that hnR-KD MM cells were more sensitive to selinexor-induced cell death in vitro and in mouse model. MM patients who responded to selinexor had relatively low hnRNPU expression. In brief, hnRNPU comprehensively regulated MM sensitivity to selinexor by affecting the localization of LTV1 and NMD3, and mRNA translation of MDM2 and RAN, which were involved in XPO1-mediated nuclear export of ribosome subunits and tumor suppressors. Our discoveries indicate that hnRNPU might be a possible marker to categorize MM patients for the use of Selinexor.


Assuntos
Mieloma Múltiplo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Ribonucleoproteínas Nucleares Heterogêneas Grupo U , Hidrazinas/farmacologia , Carioferinas/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , RNA , Proteínas de Ligação a RNA/genética
4.
Life Sci ; 333: 122157, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805164

RESUMO

AIMS: This study aimed to investigate the effect and mechanism of methylcrotonyl-CoA carboxylase subunit 1 (MCCA) on multidrug resistance in multiple myeloma (MM). MATERIALS AND METHODS: The apoptosis kit and CCK-8 reagent were used to detect drug-induced cell apoptosis and viability. Immunoprecipitation, immunofluorescence staining, and protein structural simulation were used to detect the interaction between MCCA and Bad. Immunodeficient mice were injected with ARD cells and treated with bortezomib. Changes in tumor burden were recorded by bioluminescence imaging, and κ light chain content in the blood of mice was detected by enzyme-linked immunoassay. KEY FINDINGS: Patients with high MCCA expression from a primary MM dataset had superior overall survival. After treatment with different anti-MM drugs, MCCA knockdown MM (MCCA-KD) cells had higher survival rates than control knockdown (CTR-KD) cells (p < 0.05). Mechanistic studies have revealed that MCCA-KD cells had dysfunctional mitochondria with decreased Bax and Bad levels and increased Bcl-xl and Mcl-1 levels. Furthermore, that MCCA and Bad demonstrated protein-protein interactions. The half-life of Bad in MCCA-KD cells is significantly shorter than that in CTR-KD cells (7.34 vs. 2.42 h, p < 0.05). In a human MM xenograft mouse model, we confirmed that MCCA-KD tumors had a poor response to anti-MM drugs in vivo. Finally, we showed that MCCA might contribute to multidrug resistance in different human cancers, particularly in solid tumors. SIGNIFICANCE: Our findings demonstrated a novel function of MCCA in multidrug resistance. The lack of MCCA expression promoted antiapoptotic cell signaling in MM cells.


Assuntos
Mieloma Múltiplo , Humanos , Animais , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Acil Coenzima A/farmacologia , Acil Coenzima A/uso terapêutico , Bortezomib/farmacologia , Apoptose , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos
5.
Neuropeptides ; 101: 102355, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37390743

RESUMO

Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.


Assuntos
Dor Visceral , Humanos , Neurônios , Sistema Nervoso Central , Transdução de Sinais , Trifosfato de Adenosina
6.
Chemistry ; 29(52): e202301469, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385953

RESUMO

In this work, an organic-inorganic hybrid crystal, violet-crystal (VC), was used to etch the nickel foam (NF) to fabricate a self-standing electrode for the water oxidation reaction. The efficacy of VC-assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm-2 , respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self-standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa ) show that the first electron transfer step is the rate-determining step on the surface of NF-VCs-1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate-limiting step in other electrodes. The lowest Tafel slope value observed in the NF-VCs-1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs-assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate-limiting step based on αa values, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.

7.
Cancer Lett ; 565: 216218, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149018

RESUMO

Multiple myeloma (MM) is an incurable malignancy of plasma cells. Ivermectin is a US Food and Drug Administration-approved drug for antiparasitic use. Here, we showed that ivermectin exerted anti-MM effects and significantly synergized with proteasome inhibitors in vitro and in vivo. Ivermectin alone exhibited mild anti-MM activity in vitro. Further investigation suggested that ivermectin inhibited proteasome activity in the nucleus by repressing the nuclear import of proteasome subunits, such as PSMB5-7 and PSMA3-4. Therefore, ivermectin treatment caused the accumulation of ubiquitylated proteins and the activation of the UPR pathway in MM cells. Furthermore, ivermectin treatment caused DNA damage and DNA damage response (DDR) signaling pathway activation in MM cells. Ivermectin and bortezomib exhibited synergized anti-MM activity in vitro. The dual-drug treatment resulted in synergistic inhibition of proteasome activity and increased DNA damage. An in vivo study using a human MM cell line xenograft mouse model showed that ivermectin and bortezomib efficiently repressed MM tumor growth in vivo, while the dual-drug treatment was well tolerated by experimental animals. Overall, our results demonstrated that ivermectin alone or cotreated with bortezomib might be promising in MM treatment.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Modelos Animais de Doenças , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
8.
J Cardiovasc Transl Res ; 16(5): 1220-1231, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36988860

RESUMO

Phosphoinositide-dependent protein kinase-1 (PDK1), a master kinase and involved in multiple signaling transduction, participates in regulating embryonic cardiac development and postnatal cardiac remodeling. Germline PDK1 knockout mice displayed no heart development; in this article, we deleted PDK1 in heart tissue with different cre to characterize the temporospatial features and find the relevance with congenital heart disease(CHD), furthermore to investigate the underlying mechanism. Knocking out PDK1 with Nkx2.5-cre, the heart showed prominent pulmonic stenosis. Ablated PDK1 with Mef2cSHF-cre, the second heart field (SHF) exhibited severe hypoplasia. And deleted PDK1 with αMHC-cre, the mice displayed dilated heart disease, protein analysis indicated PI3K and ERK were activated; meanwhile, PDK1-AKT-GSK3, and S6K-S6 were disrupted; phosphorylation level of Akt473, S6k421/424, and Gsk3α21 enhanced; however, Akt308, S6k389, and Gsk3ß9 decreased. In mechanism investigation, we found SHP2 membrane localization and phosphorylation level of SHP2542 elevated, which suggested SHP2 likely mediated the disruption.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Cardiopatias Congênitas , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Animais , Camundongos , Quinase 3 da Glicogênio Sintase/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
9.
Sci Rep ; 13(1): 2560, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781922

RESUMO

In order to improve the functionality and additional value of agricultural products, this study developing nano-selenium fermentation broth and established a new application strategy of bio-nano-selenium by screening and identifying selenium-rich microorganisms. We isolated a new strain from tobacco waste and named it Bacillus subtilis SE201412 (GenBank accession no. OP854680), which could aerobically grow under the condition of 66,000 mg L-1 selenite concentration, and could convert 99.19% of selenite into biological nano-selenium (BioSeNPs) within 18 h. Using strain SE201412, we industrially produced the different concentrations of fermentation broth containing 5000-3000 mg L-1 pure selenium for commercial use. The synthesized selenium nanoparticles (SeNPs) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nanoparticle tracking analysis (NTA). TEM and SEM results showed that SeNPs were distributed outside cells. NTA assay of fermentation broth indicated that the nanoparticles were spherical with an average particle size of 126 ± 0.5 nm. Toxicity test revealed that the median lethal dose (LD50) of the fermentation broth to mice was 2710 mg kg-1, indicating its low toxicity and high safety. In addition, we applied BioSeNP fermentation broth to rice and wheat through field experiments. The results showed that the application of fermentation broth significantly increased the total selenium content and organic selenium percentage in rice and wheat grains. Our findings provide valuable reference for the development of BioSeNPs with extensive application prospects.


Assuntos
Nanopartículas , Selênio , Animais , Camundongos , Bacillus subtilis , Fermentação , Ácido Selenioso
10.
J Hazard Mater ; 450: 131008, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842201

RESUMO

Medicinal plants have a wide range of uses worldwide. However, the quality of medicinal plants is affected by severe cadmium pollution. Cadmium can reduce photosynthetic capacity, lead to plant growth retardation and oxidative stress, and affect secondary metabolism. Medicinal plants have complex mechanisms to cope with cadmium stress. On the one hand, an antioxidant system can effectively scavenge excess reactive oxygen species produced by cadmium stress. On the other hand, cadmium chelates are formed by chelating peptides and then sequestered through vacuolar compartmentalization. Cadmium has no specific transporter in plants and is generally transferred to plant tissues through competition for the transporters of divalent metal ions, such as zinc, iron, and manganese. In recent years, progress has been achieved in exploring the physiological mechanisms by which medicinal plants responding to cadmium stress. The exogenous regulation of cadmium accumulation in medicinal plants has been studied, and the aim is reducing the toxicity of cadmium. However, research into molecular mechanisms is still lagging. In this paper, we review the physiological and molecular mechanisms and regulatory networks of medicinal plants exposed to cadmium, providing a reference for the study on the responses of medicinal plants to cadmium stress.


Assuntos
Cádmio , Plantas Medicinais , Cádmio/metabolismo , Plantas Medicinais/metabolismo , Zinco , Estresse Oxidativo , Manganês , Estresse Fisiológico
11.
ACS Omega ; 8(1): 1693-1701, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643473

RESUMO

Multiple myeloma (MM), a plasma cell cancer in bone marrow, remains an incurable disease. Melphalan, an alkylating agent, is a conventional anticancer drug that is still widely used for MM treatment in clinics. However, melphalan-induced organ toxicity and side effects are common. In this study, we loaded melphalan into a liposomal capsule and constituted liposomal melphalan (liposomal MEL). Liposomal MEL particles were approximately 120 nm in size and stable in vitro. The liposomal particles could be effectively taken up by MM cells. In vitro cytotoxicity assays using MM cell lines and primary MM cells showed that liposomal MEL exhibited similar anti-MM activity compared to an equivalent amount of free melphalan (free MEL) compound. In animal models, liposomal particles had bone marrow enrichment and prolonged half-life in vivo. Liposomal MEL exposure resulted in less liver and colon organ toxicity than exposure to an equivalent amount of free MEL-treated mice. Importantly, liposomal MEL had potent anti-MM activity in vivo in a human MM xenograft mouse model. Overall, our findings suggested that liposome-encapsulated melphalan was an effective drug modification of the melphalan compound and showed promise in MM treatment.

12.
Nucleic Acids Res ; 50(18): 10733-10755, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36200826

RESUMO

Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.


Assuntos
RNA Longo não Codificante , Adenosina Trifosfatases , Animais , Diferenciação Celular , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Humanos , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regeneração , Suínos
13.
Front Microbiol ; 13: 1035434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312978

RESUMO

Ganoderma is a globally distributed genus that encompasses species with forestry ecological, medicinal, economic, and cultural importance. Despite the importance of this fungus, the studies on the species diversity of Ganoderma in Yunnan Province, China (YPC) have poorly been carried out. During this study, opportunistic sampling was used to collect 21 specimens of Ganoderma from YPC. Morphology and multigene phylogeny of the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nrLSU), the translation elongation factor 1-α gene (TEF1-α), and the second largest subunit of RNA polymerase II (RPB2) were used to identify them. Morphological and molecular characterization of the 21 specimens showed that they belong to 18 species of Ganoderma, of which three are novel viz. G. artocarpicola, G. obscuratum and G. yunnanense. Ganoderma artocarpicola is characterized by the sessile and concrescent basidiomata, reddish brown to yellowish brown pileus surface, heterogeneous context, wavy margin, and ovoid basidiospores. Ganoderma obscuratum is distinguished by small pores (6-9 per mm), dorsolaterally sub-stipitate basidiomata which become greyish-brown when dry, and narrow ellipsoid basidiospores. Ganoderma yunnanense is characterized by cream color pore surface and context, centrally to laterally stipitate basidiomata with reddish-brown to violet-brown strongly laccate pileus surface, and broadly ellipsoid basidiospores. With the help of an extensive literature survey and the results of this study, a checklist of 32 Ganoderma species from YPC was established, which accounts for 71.11% of the known species in China. In addition, a key to the Ganoderma in YPC is also provided.

14.
Am J Transl Res ; 14(8): 5308-5325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105048

RESUMO

Acute myeloid leukemia (AML) is a common hematological malignancy in adults. AML patients exhibit clinical heterogeneity with complications of molecular basis. The leukemogenesis of AML involves immune escape, and the immunosuppression status of the patient might have great impact on AML treatment outcome. In this study, we established an immune prognostic model of AML using bioinformatics tools. With the data in the TCGA and GTEx datasets, we analyzed differentially expressed genes (DEGs) in non-M3 AML and identified 420 immune-related DEGs. Among which, 49 genes' expression was found to be related to AML prognosis based on univariate Cox regression analysis. Next, we established a prognostic model with these 49 genes in AML by LASSO regression and multivariate Cox regression analyses. In our model, the expressions of 5 immune genes, MIF, DEF6, OSM, MPO, AVPR1B, were used to stratify non-M3 AML patients' treatment outcome. A patient's risk score could be calculated as Risk Score=0.40081 × MIF (MIF expression) - 0.15201 × MPO + 0.78073 × DEF6 - 0.45192 × AVPR1B + 0.25912 × OSM. The area under the curve of the risk score signature was 0.8, 0.8, and 0.96 at 1 year, 3 years, and 5 years, respectively. The prognostic model was then validated internally by TCGA data and externally by GEO data. At last, the result of single-sample gene-set enrichment analysis demonstrated that compared with healthy samples, the abundance of non-turmeric immune cells was significantly repressed in AML. To summarize, we presented an immune-related 5-gene signature prognostic model in AML.

15.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36040812

RESUMO

The proteasome inhibitors (PIs) bortezomib and carfilzomib, which target proteasome 20S subunit beta 5 (PSMB5) in cells, are widely used in multiple myeloma (MM) treatment. In this study, we demonstrated the role of interferon-stimulated 20 kDa exonuclease-like 2 (ISG20L2) in MM PI resistance. Gain- and loss-of-function studies showed that ISG20L2 suppressed MM cell sensitivity to PIs in vitro and in vivo. Patients with ISG20L2lo MM had a better response to PIs and a longer overall survival than patients with ISG20L2hi MM. Biotinylated bortezomib pull-down assays showed that ISG20L2 competed with PSMB5 in binding to bortezomib. The surface plasmon resonance assay confirmed the direct binding of bortezomib to ISG20L2. In ISG20L2hi MM cells, ISG20L2 attenuated the binding of bortezomib to PSMB5, resulting in lower inhibition of proteasome activity and therefore less bortezomib-induced cell death. Overall, we identified a potentially novel mechanism by which ISG20L2 conferred bortezomib resistance on MM. The expression of ISG20L2 correlated with MM PI responses and patient treatment outcomes.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Ácidos Borônicos/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Exonucleases , Humanos , Interferons , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Pirazinas
16.
Ecotoxicol Environ Saf ; 242: 113849, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35809394

RESUMO

Groundwater may contain radioactive substances which can be dangerous to human health. Concentrations of natural radionuclides polonium (Po), thorium (Th), uranium (U), and radium (Ra) isotopes were measured in groundwater samples collected from different locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) site in Carlsbad, New Mexico. The average values of gross activity concentrations of 210Po, 228Th, 238U, 234U, 226Ra and 228 Ra isotopes were determined to be 1.62 Bq L-1 in shallow groundwater and 5.88 Bq L-1 in deep groundwater, respectively. The total radioactivity in deep groundwater was higher than that in shallow groundwater, and most of the radioactivity in the water is from 226Ra. Furthermore, the effective doses for ingestion of natural radionuclides were about 0.333 mSv y-1 for shallow groundwater and about 1.338 mSv y-1 for deep groundwater samples, which are higher than the World Health Organization (WHO, 2017) guideline level (0.1 mSv y-1) for drinking water. Ra dominated the total ingestion dose, contributing 93.06 % and 75.40 % of the total effective doses to the deep and shallow groundwater, respectively. The ingrowth and decay of natural radionuclides suggested that 228Ra/226Ra ratio can be a useful indicator of the source of radioactive contamination. The radioactivity data obtained from the investigated groundwater samples can be used to establish a baseline for radioactivity levels in groundwater around the WIPP site.


Assuntos
Água Subterrânea , Polônio , Monitoramento de Radiação , Radioatividade , Rádio (Elemento) , Urânio , Poluentes Radioativos da Água , Humanos , Polônio/análise , Radioisótopos/análise , Rádio (Elemento)/análise , Tório/análise , Urânio/análise , Poluentes Radioativos da Água/análise
17.
Cell Death Dis ; 13(2): 136, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145058

RESUMO

Drug-resistance is a major problem preventing a cure in patients with multiple myeloma (MM). Previously, we demonstrated that activated-leukocyte-cell-adhesion-molecule (ALCAM) is a prognostic factor in MM and inhibits EGF/EGFR-initiated MM clonogenicity. In this study, we further showed that the ALCAM-EGF/EGFR axis regulated the MM side population (SP)-mediated drug-resistance. ALCAM-knockdown MM cells displayed an enhanced ratio of SP cells in the presence of bone marrow stromal cells (BMSCs) or with the supplement of recombinant EGF. SP MM cells were resistant to chemotherapeutics melphalan or bortezomib. Drug treatment stimulated SP-genesis. Mechanistically, EGFR, primed with EGF, activated the hedgehog pathway and promoted the SP ratio; meanwhile, ALCAM inhibited EGFR downstream pro-MM cell signaling. Further, SP MM cells exhibited an increased number of mitochondria compared to the main population. Interference of the mitochondria function strongly inhibited SP-genesis. Animal studies showed that combination therapy with both an anti-MM agent and EGFR inhibitor gefitinib achieved prolonged MM-bearing mice survival. Hence, our work identifies ALCAM as a novel negative regulator of MM drug-resistance, and EGFR inhibitors may be used to improve MM therapeutic efficacy.


Assuntos
Antígenos CD , Moléculas de Adesão Celular Neuronais , Proteínas Fetais , Proteínas Hedgehog , Mieloma Múltiplo , Molécula de Adesão de Leucócito Ativado/metabolismo , Animais , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico , Receptores ErbB/genética , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo
18.
Chemosphere ; 286(Pt 1): 131655, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315083

RESUMO

Semi-continuous experiments were carried out in lab-scale continuous stirred tank reactors to evaluate the effects of fermentation temperature (37 ± 1 °C and 55 ± 1 °C) and total solids (TS) contents (3 %, 6 %, and 12 %) on biohydrogen production from the dark fermentations (DF) of rice straw (RS) and the total operation duration was 105 days. The experimental results show that biohydrogen production (0.46-63.60 mL/g VSadded) from the thermophilic (55 ± 1 °C) DF (TDF) was higher than the mesophilic (37 ± 1 °C) DF (MDF) (0.19-2.13 mL/g VSadded) at the three TS contents, and achieved the highest of 63.60 ± 2.98 mL/g VSadded at TS = 6 % in TDF. The pH, NH4+-N and total volatile fatty acid of fermentation liquids in the TDF were all higher than those in the MDF. The high abundance of lactic acid-producing bacteria resulted in low biohydrogen produced at TS = 3 %. Under the TDF with TS = 6 %, the highest abundance of hydrolytic bacteria (Ruminiclostridium 54.24 %) led to the highest biohydrogen production. The increase of TS content from 6 % to 12 % induced degradation pathway changes from biohydrogen production to methane production. This study demonstrated that butyric acid fermentation was the main pathway to produce biohydrogen from RS in both DFs.


Assuntos
Microbiota , Oryza , Reatores Biológicos , Fermentação , Hidrogênio , Temperatura
19.
Biomark Res ; 9(1): 75, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649622

RESUMO

Multiple myeloma (MM) is a treatable plasma cell cancer with no cure. Clinical evidence shows that the status of minimal residual disease (MRD) after treatment is an independent prognostic factor of MM. MRD indicates the depth of post-therapeutic remission. In this review article, we outlined the major clinical trials that have determined the prognostic value of MRD in MM. We also reviewed different methods that were used for MM MRD assessment. Most important, we reviewed our current understanding of MM MRD biology. MRD studies strongly indicate that MRD is not a uniform declination of whole MM tumor population. Rather, MM MRD exhibits unique signatures of cytogenetic aberration and gene expression profiles, unlike those of MM cells before therapy. Diagnostic high-risk MM and low-risk MM exhibited a diversity of MRD features. Clonal evaluation may occur at the MRD stage in MM. The dynamics from the diagnostic MM to MRD correlate with the disease prognosis. Lastly, on the aspect of omics, we performed data-based analysis to address the biological features underlying the course of diagnostic-to-MRD MM. To summarize, the MRD stage of disease represents a critical step in MM pathogenesis and progression. Demonstration of MM MRD biology should help us to deal with the curative difficulties.

20.
Blood Adv ; 5(23): 5269-5282, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34592762

RESUMO

Multiple myeloma, a plasma cell malignancy in the bone marrow, remains largely incurable with currently available therapeutics. In this study, we discovered that the activated leukocyte cell adhesion molecule (ALCAM) interacted with epidermal growth factor receptor (EGFR), and regulated myelomagenesis. ALCAM was a negative regulator of myeloma clonogenicity. ALCAM expression was positively correlated with patients' survival. ALCAM-knockdown myeloma cells displayed enhanced colony formation in the presence of bone marrow stromal cells (BMSCs). BMSCs supported myeloma colony formation by secreted epidermal growth factor (EGF), which bound with its receptor (EGFR) on myeloma cells and activated Mek/Erk cell signaling, PI3K/Akt cell signaling, and hedgehog pathway. ALCAM could also bind with EGFR, block EGF from binding to EGFR, and abolish EGFR-initiated cell signaling. Hence, our study identifies ALCAM as a novel negative regulator of myeloma pathogenesis.


Assuntos
Molécula de Adesão de Leucócito Ativado , Proteínas Hedgehog , Antígenos CD , Moléculas de Adesão Celular Neuronais , Receptores ErbB/genética , Proteínas Fetais , Humanos , Fosfatidilinositol 3-Quinases , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA