Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Am J Pathol ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537933

RESUMO

Hepatocellular carcinoma (HCC) is one of the most fatal malignancies. Early diagnosis of HCC is crucial in reducing the risk for mortality. This study analyzed a panel of nine fusion transcripts in serum samples from 61 HCC patients and 75 patients with non-HCC conditions, using real-time quantitative RT-PCR. Seven of the nine fusions were frequently detected in HCC patients: MAN2A1-FER (100%), SLC45A2-AMACR (62.3%), ZMPSTE24-ZMYM4 (62.3%), PTEN-NOLC1 (57.4%), CCNH-C5orf30 (55.7%), STAMBPL1-FAS (26.2%), and PCMTD1-SNTG1 (16.4%). Machine-learning models were constructed based on serum fusion-gene levels to predict HCC in the training cohort, using the leave-one-out cross-validation approach. One machine-learning model, called the four fusion genes logistic regression model (MAN2A1-FER≤40, CCNH-C5orf30≤38, SLC45A2-AMACR≤41, and PTEN-NOLC1≤40), produced accuracies of 91.5% and 83.3% in the training and testing cohorts, respectively. When serum α-fetal protein level was incorporated into the machine-learning model, a two fusion gene (MAN2A1-FER≤40, CCNH-C5orf30≤38) + α-fetal protein logistic regression model was found to generate an accuracy of 94.8% in the training cohort. The same model generated 95% accuracy in both the testing and combined cohorts. Cancer treatment was associated with reduced levels of most of the serum fusion transcripts. Serum fusion-gene machine-learning models may serve as important tools in screening for HCC and in monitoring the impact of HCC treatment.

2.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38497929

RESUMO

BACKGROUND: Liver cancer is one of the most lethal malignancies for humans. The treatment options for advanced-stage liver cancer remain limited. A new treatment is urgently needed to reduce the mortality of the disease. METHODS: In this report, we developed a technology for mutation site insertion of a suicide gene (herpes simplex virus type 1- thymidine kinase) based on type II CRISPR RNA-guided endonuclease Cas9-mediated genome editing to treat liver cancers. RESULTS: We applied the strategy to 3 different mutations: S45P mutation of catenin beta 1, chromosome breakpoint of solute carrier family 45 member 2-alpha-methylacyl-CoA racemase gene fusion, and V235G mutation of SAFB-like transcription modulator. The results showed that the herpes simplex virus type 1-thymidine kinase insertion rate at the S45P mutation site of catenin beta 1 reached 77.8%, while the insertion rates at the breakpoint of solute carrier family 45 member 2 - alpha-methylacyl-CoA racemase gene fusion were 95.1%-98.7%, and the insertion at V235G of SAFB-like transcription modulator was 51.4%. When these targeting reagents were applied to treat mouse spontaneous liver cancer induced by catenin beta 1S45P or solute carrier family 45 member 2-alpha-methylacyl-CoA racemase, the mice experienced reduced tumor burden and increased survival rate. Similar results were also obtained for the xenografted liver cancer model: Significant reduction of tumor volume, reduction of metastasis rate, and improved survival were found in mice treated with the targeting reagent, in comparison with the control-treated groups. CONCLUSIONS: Our studies suggested that mutation targeting may hold promise as a versatile and effective approach to treating liver cancers.


Assuntos
Herpesvirus Humano 1 , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Timidina Quinase/genética , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 1/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Cateninas , Mutação/genética
3.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206124

RESUMO

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPSeq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPSeq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.


Assuntos
Células Artificiais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/genética , Isoformas de Proteínas/genética , Mamíferos
4.
bioRxiv ; 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993628

RESUMO

The protein diversity of mammalian cells is determined by arrays of isoforms from genes. Genetic mutation is essential in species evolution and cancer development. Accurate Long-read transcriptome sequencing at single-cell level is required to decipher the spectrum of protein expressions in mammalian organisms. In this report, we developed a synthetic long-read single-cell sequencing technology based on LOOPseq technique. We applied this technology to analyze 447 transcriptomes of hepatocellular carcinoma (HCC) and benign liver from an individual. Through Uniform Manifold Approximation and Projection (UMAP) analysis, we identified a panel of mutation mRNA isoforms highly specific to HCC cells. The evolution pathways that led to the hyper-mutation clusters in single human leukocyte antigen (HLA) molecules were identified. Novel fusion transcripts were detected. The combination of gene expressions, fusion gene transcripts, and mutation gene expressions significantly improved the classification of liver cancer cells versus benign hepatocytes. In conclusion, LOOPseq single-cell technology may hold promise to provide a new level of precision analysis on the mammalian transcriptome.

5.
Am J Pathol ; 193(4): 392-403, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681188

RESUMO

Prostate cancer remains one of the most fatal malignancies in men in the United States. Predicting the course of prostate cancer is challenging given that only a fraction of prostate cancer patients experience cancer recurrence after radical prostatectomy or radiation therapy. This study examined the expressions of 14 fusion genes in 607 prostate cancer samples from the University of Pittsburgh, Stanford University, and the University of Wisconsin-Madison. The profiling of 14 fusion genes was integrated with Gleason score of the primary prostate cancer and serum prostate-specific antigen level to develop machine-learning models to predict the recurrence of prostate cancer after radical prostatectomy. Machine-learning algorithms were developed by analysis of the data from the University of Pittsburgh cohort as a training set using the leave-one-out cross-validation method. These algorithms were then applied to the data set from the combined Stanford/Wisconsin cohort (testing set). The results showed that the addition of fusion gene profiling consistently improved the prediction accuracy rate of prostate cancer recurrence by Gleason score, serum prostate-specific antigen level, or a combination of both. These improvements occurred in both the training and testing cohorts and were corroborated by multiple models.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/genética , Recidiva Local de Neoplasia/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Próstata/patologia , Prostatectomia , Prognóstico
6.
Hepatol Commun ; 6(1): 209-222, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505419

RESUMO

Chromosome rearrangement is one of the hallmarks of human malignancies. Gene fusion is one of the consequences of chromosome rearrangements. In this report, we show that gene fusion between solute carrier family 45 member 2 (SLC45A2) and alpha-methylacyl-coenzyme A racemase (AMACR) occurs in eight different types of human malignancies, with frequencies ranging from 45% to 97%. The chimeric protein is translocated to the lysosomal membrane and activates the extracellular signal-regulated kinase signaling cascade. The fusion protein promotes cell growth, accelerates migration, resists serum starvation-induced cell death, and is essential for cancer growth in mouse xenograft cancer models. Introduction of SLC45A2-AMACR into the mouse liver using a sleeping beauty transposon system and somatic knockout of phosphatase and TENsin homolog (Pten) generated spontaneous liver cancers within a short period. Conclusion: The gene fusion between SLC45A2 and AMACR may be a driving event for human liver cancer development.


Assuntos
Antígenos de Neoplasias/genética , Fusão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Racemases e Epimerases/genética , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Proteínas de Membrana Lisossomal/genética , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas de Fusão Oncogênica/genética , Translocação Genética
7.
Hepatol Commun ; 6(4): 710-727, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34725972

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal human cancers. Liver transplantation has been an effective approach to treat liver cancer. However, significant numbers of patients with HCC experience cancer recurrence, and the selection of suitable candidates for liver transplant remains a challenge. We developed a model to predict the likelihood of HCC recurrence after liver transplantation based on transcriptome and whole-exome sequencing analyses. We used a training cohort and a subsequent testing cohort based on liver transplantation performed before or after the first half of 2012. We found that the combination of transcriptome and mutation pathway analyses using a random forest machine learning correctly predicted HCC recurrence in 86.8% of the training set. The same algorithm yielded a correct prediction of HCC recurrence of 76.9% in the testing set. When the cohorts were combined, the prediction rate reached 84.4% in the leave-one-out cross-validation analysis. When the transcriptome analysis was combined with Milan criteria using the k-top scoring pairs (k-TSP) method, the testing cohort prediction rate improved to 80.8%, whereas the training cohort and the combined cohort prediction rates were 79% and 84.4%, respectively. Application of the transcriptome/mutation pathways RF model on eight tumor nodules from 3 patients with HCC yielded 8/8 consistency, suggesting a robust prediction despite the heterogeneity of HCC. Conclusion: The genome prediction model may hold promise as an alternative in selecting patients with HCC for liver transplant.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transplante de Fígado , Carcinoma Hepatocelular/diagnóstico , Exoma/genética , Humanos , Neoplasias Hepáticas/diagnóstico , Recidiva Local de Neoplasia/diagnóstico , Estudos Retrospectivos , Transcriptoma/genética , Sequenciamento do Exoma
8.
Mol Oncol ; 16(13): 2451-2469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792282

RESUMO

Prostate cancer is a highly heterogeneous disease, understanding the crosstalk between complex genomic and epigenomic alterations will aid in developing targeted therapeutics. We demonstrate that, even though snail family transcriptional repressor 2 (SNAI2) is frequently amplified in prostate cancer, it is epigenetically silenced in this disease, with dynamic changes in SNAI2 levels showing distinct clinical relevance. Integrative clinical data from 18 prostate cancer cohorts and experimental evidence showed that gene fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) is involved in the silencing of SNAI2. We created a silencer score to evaluate epigenetic repression of SNAI2, which can be reversed by treatment with DNA methyltransferase inhibitors and histone deacetylase inhibitors. Silencing of SNAI2 facilitated tumor cell proliferation and luminal differentiation. Furthermore, SNAI2 has a major influence on the tumor microenvironment by reactivating tumor stroma and creating an immunosuppressive microenvironment in prostate cancer. Importantly, SNAI2 expression levels in part determine sensitivity to the cancer drugs dasatinib and panobinostat. For the first time, we defined the distinct clinical relevance of SNAI2 expression at different disease stages. We elucidated how epigenetic silencing of SNAI2 controls the dynamic changes of SNAI2 expression that are essential for tumor initiation and progression and discovered that restoring SNAI2 expression by treatment with panobinostat enhances dasatinib sensitivity, indicating a new therapeutic strategy for prostate cancer.


Assuntos
Proteínas de Fusão Oncogênica , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Linhagem Celular Tumoral , Dasatinibe/uso terapêutico , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Panobinostat/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Microambiente Tumoral
9.
Sci Rep ; 11(1): 16995, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417538

RESUMO

Prostate cancer remains one of the most lethal cancers for men in the United States. The study aims to detect fusion transcripts in the blood samples of prostate cancer patients. We analyzed nine fusion transcripts including MAN2A1-FER, SLC45A2-AMACR, TRMT11-GRIK2, CCNH-C5orf30, mTOR-TP53BP1, KDM4-AC011523.2, TMEM135-CCDC67, LRRC59-FLJ60017 and Pten-NOLC1147 in the blood samples from 147 prostate cancer patients and 14 healthy individuals, using Taqman RT-PCR and Sanger's sequencing. Similar analyses were also performed on 25 matched prostate cancer samples for matched-sample evaluation. Eighty-two percent blood samples from the prostate cancer patients were positive for MAN2A1-FER transcript, while 41.5% and 38.8% blood samples from the prostate cancer patients were positive for SLC45A2-AMACR and Pten-NOLC1, respectively. CCNH-c5orf30 and mTOR-TP53BP1 had low detection rates, positive in only 5.4% and 4% of the blood samples from the prostate cancer patients. Only 2 blood samples were positive for KDM4B-AC011523.2 transcript. Overall, 89.8% patients were positive for at least one fusion transcript in their blood samples. The statistical analysis showed varied sensitivity of fusion transcript detection in the blood based on the types of fusions. In contrast, the blood samples from all healthy individuals were negative for the fusion transcripts. Detection of fusion transcripts in the blood samples of the prostate cancer patients may be a fast and cost-effective way to detect prostate cancer.


Assuntos
Proteínas de Fusão Oncogênica/sangue , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Cancer Lett ; 519: 211-225, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34311033

RESUMO

The transient receptor potential canonical (TRPC) channels have been implicated in various types of malignancies including gastric cancer (GC). However, the detailed mechanisms of TRPC channels underlying cell proliferation and apoptosis of GC cells remain largely unknown. Here, we report that TRPC3 was highly expressed in clinical GC specimens and correlated with GC malignant progression and poor prognosis. Forced expression of TRPC3 in GC cells enhanced both receptor-operated Ca2+ entry (ROCE) and store-operated Ca2+ entry (SOCE) and promoted the nuclear factor of activated T cell 2 (NFATc2) nuclear translocation by AKT/GSK-3ß and CNB2 signaling. Pharmacological inhibition of TRPC3 or CRISPR/Cas9-mediated TRPC3 knockout effectively inhibited the growth of GC cells both in vitro and in vivo. These effects were reversible by the rescue of TRPC3 expression. Furthermore, we confirmed the role of TRPC3 and the ROCE-AKT/GSK3ß-CNB2/NFATc2 signaling cascade in regulating cell cycle checkpoint, apoptosis cascade, and intracellular ROS production in GC. Overall, our findings suggest an oncogenic role of TRPC3 in GC and may highlight a potential target of TRPC3 for therapeutic intervention of GC and its malignant progression.


Assuntos
Carcinogênese/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Apoptose/fisiologia , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Camundongos , Oncogenes/fisiologia , Transporte Proteico/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia
11.
Minim Invasive Surg ; 2021: 5524986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976937

RESUMO

BACKGROUND: Totally extraperitoneal herniorrhaphy (TEP) is a therapeutic challenge because of its complex anatomical location in inguinal region. The aim of this study was to describe the related surgical anatomy through laparoscopic observation and share the lessons learned from a review of 250 primary inguinal hernia repair procedures performed at our hospital from January 2013 to November 2019. Patients and Methods. There were 245 men and 5 women (median age: 63.2 years). Right hernia (60.2%) was the most common site. Indirect hernia (60.5%) was the most common abnormality. The classification of type II (65.0%) was the most common form. Surgical techniques comprised retromuscular approach using cauterized dissection, management of variations of arcuate line, Retzius space and Bogros space dissection, hernia sac reduction, and mesh positioning. RESULTS: The incidence of peritoneum injury was in 27 (10.1%). No epigastric vessels were injured. There were 8 (3%) hematoma and 18 (6.8%) seroma. No mesh infection, chronic pain, and recurrence were found after follow-up of an average of 35 months. CONCLUSION: A good understanding of the anatomically complex nature in the inguinal region can make it easier and safer to learn the TEP approach. Early and midterm outcomes after TEP are satisfactory.

12.
Commun Biol ; 4(1): 506, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907296

RESUMO

The characterization of human gene expression is limited by short read lengths, high error rates and large input requirements. Here, we used a synthetic long read (SLR) sequencing approach, LoopSeq, to generate accurate sequencing reads that span full length transcripts using standard short read data. LoopSeq identified isoforms from control samples with 99.4% accuracy and a 0.01% per-base error rate, exceeding the accuracy reported for other long-read technologies. Applied to targeted transcriptome sequencing from colon cancers and their metastatic counterparts, LoopSeq revealed large scale isoform redistributions from benign colon mucosa to primary colon cancer and metastatic cancer and identified several previously unknown fusion isoforms. Strikingly, single nucleotide variants (SNVs) occurred dominantly in specific isoforms and some SNVs underwent isoform switching in cancer progression. The ability to use short reads to generate accurate long-read data as the raw unit of information holds promise as a widely accessible approach in transcriptome sequencing.


Assuntos
Processamento Alternativo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Transcriptoma , Humanos , Isoformas de Proteínas
13.
Oncogene ; 40(6): 1064-1076, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33323972

RESUMO

Inactivation of Pten gene through deletions and mutations leading to excessive pro-growth signaling pathway activations frequently occurs in cancers. Here, we report a Pten derived pro-cancer growth gene fusion Pten-NOLC1 originated from a chr10 genome rearrangement and identified through a transcriptome sequencing analysis of human cancers. Pten-NOLC1 fusion is present in primary human cancer samples and cancer cell lines from different organs. The product of Pten-NOLC1 is a nuclear protein that interacts and activates promoters of EGFR, c-MET, and their signaling molecules. Pten-NOLC1 promotes cancer proliferation, growth, invasion, and metastasis, and reduces the survival of animals xenografted with Pten-NOLC1-expressing cancer cells. Genomic disruption of Pten-NOLC1 induces cancer cell death, while genomic integration of this fusion gene into the liver coupled with somatic Pten deletion produces spontaneous liver cancers in mice. Our studies indicate that Pten-NOLC1 gene fusion is a driver for human cancers.


Assuntos
Neoplasias Hepáticas/genética , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-met/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Xenoenxertos , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , Transdução de Sinais/genética
14.
Clin Epigenetics ; 12(1): 80, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503656

RESUMO

BACKGROUND: The chromatin insulator CCCTC-binding factor (CTCF) displays tissue-specific DNA binding sites that regulate transcription and chromatin organization. Despite evidence linking CTCF to the protection of epigenetic states through barrier insulation, the impact of CTCF loss on genome-wide DNA methylation sites in human cancer remains undefined. RESULTS: Here, we demonstrate that prostate and breast cancers within The Cancer Genome Atlas (TCGA) exhibit frequent copy number loss of CTCF and that this loss is associated with increased DNA methylation events that occur preferentially at CTCF binding sites. CTCF sites differ among tumor types and result in tissue-specific methylation patterns with little overlap between breast and prostate cancers. DNA methylation and transcriptome profiling in vitro establish that forced downregulation of CTCF leads to spatially distinct DNA hypermethylation surrounding CTCF binding sites, loss of CTCF binding, and decreased gene expression that is also seen in human tumors. DNA methylation inhibition reverses loss of expression at these CTCF-regulated genes. CONCLUSION: These findings establish CTCF loss as a major mediator in directing localized DNA hypermethylation events in a tissue-specific fashion and further support its role as a driver of the cancer phenotype.


Assuntos
Sítios de Ligação/genética , Fator de Ligação a CCCTC/genética , Metilação de DNA/genética , Neoplasias/genética , Neoplasias da Mama/genética , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Ilhas de CpG/genética , Regulação para Baixo/genética , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Fenótipo , Neoplasias da Próstata/genética
15.
Oncotarget ; 10(36): 3352-3360, 2019 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-31164957

RESUMO

Hepatocellular carcinoma is one of the most lethal cancers in the United States. Early detection of the disease is crucial for reducing the mortality of this malignancy. Recently, we identified a panel of fusion genes present in several types of human cancers, including hepatocellular carcinoma. Among 8 fusion genes, MAN2A1-FER, TRMT11-GRIK2 and CCNH-C5orf30 appear most frequently in hepatocellular carcinoma samples. In this study, we showed that the fusion transcripts of MAN2A1-FER, CCNH-C5orf30 and SLC45A2-AMACR were detected in the serum samples of liver cancer patients as circulating cell-free RNA. The distributions of these gene fusion RNA fragments largely matched those of the primary HCC samples. In contrast, the sera of all healthy individuals free of human malignancies were shown to be negative for these fusion genes. These results suggest that gene fusion RNA is frequently shed from liver cancer cells. The detection of serum cell-free fusion transcripts may provide a new approach to aid in the diagnosis, follow-up or therapy of liver cancers.

16.
Sci Rep ; 9(1): 1074, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705370

RESUMO

Chromosome changes are one of the hallmarks of human malignancies. Chromosomal rearrangement is frequent in human cancers. One of the consequences of chromosomal rearrangement is gene fusions in the cancer genome. We have previously identified a panel of fusion genes in aggressive prostate cancers. In this study, we showed that 6 of these fusion genes are present in 7 different types of human malignancies with variable frequencies. Among them, the CCNH-C5orf30 and TRMT11-GRIK2 gene fusions were found in breast cancer, colon cancer, non-small cell lung cancer, esophageal adenocarcinoma, glioblastoma multiforme, ovarian cancer and liver cancer, with frequencies ranging from 12.9% to 85%. In contrast, four other gene fusions (mTOR-TP53BP1, TMEM135-CCDC67, KDM4-AC011523.2 and LRRC59-FLJ60017) are less frequent. Both TRMT11-GRIK2 and CCNH-C5orf30 are also frequently present in lymph node metastatic cancer samples from the breast, colon and ovary. Thus, detecting these fusion transcripts may have significant biological and clinical implications in cancer patient management.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Metástase Neoplásica , Neoplasias/patologia
17.
Anat Rec (Hoboken) ; 302(9): 1544-1551, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30809951

RESUMO

Melatonin, a neurohormone secreted by the pineal gland, has a variety of biological functions, such as circadian rhythms regulation, anti-oxidative activity, immunomodulatory effects, and anittumor, etc. At present, its antitumor effect has attracted people's attention due to its extensive tissue distribution, good tissue compatibility, and low toxic and side effects. In the gastrointestinal tract, there is high level of melatonin and many studies showed melatonin has effects of anti-gastric cancer. In this experiment, human gastric cancer cell lines AGS and MGC803 were used to investigate the intracellular molecular mechanism of melatonin against gastric cancer. After AGS and MGC803 have been treated with melatonin, the changes of cell morphology and cellular structure were observed under electron microscope. Flow cytometer and apoptosis detection kits were used to analyze the effect of apoptosis on AGS and MGC803. The alterations of apoptosis-related proteins Caspase 9, Caspase 3, and upstream regulators AKT, MDM2 including expression, phosphorylation, and activation were detected to analyze the intracellular molecular mechanism of melatonin inhibiting gastric cancer. In AGS and MGC803 cells with melatonin exposure, cleaved Caspase 9 was upregulated and Caspase 3 was activated; moreover, MDM2 and AKT expression and phosphorylation were downregulated. Melatonin promoted apoptosis of AGS and MGC803 cells by the downregulation of AKT and MDM2. Anat Rec, 302:1544-1551, 2019. © 2019 American Association for Anatomy.


Assuntos
Antioxidantes/farmacologia , Apoptose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Neoplasias Gástricas/patologia , Proliferação de Células , Regulação para Baixo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Células Tumorais Cultivadas
18.
Oncol Rep ; 39(4): 1975-1983, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29484412

RESUMO

Globally, gastric cancer (GC) is one of the most common types of cancer and the third leading cause of cancer­related death. In China, gastric and liver cancers have the highest mortality rates. Melatonin, also known as N-acetyl­5-methoxytryptamine, is a hormone that is produced by the pineal gland in animals and regulates sleep and wakefulness. Melatonin has been shown to inhibit various carcinomas, including GC. There are many different hypotheses to explain the anticancer effects of melatonin, including stimulation of apoptosis, inhibition of cell growth, regulation of anticancer immunity, induction of free-radical scavenging, and the competitive inhibition of estrogen. However, the underlying mechanism by which these effects are elicited remains elusive. The aim of the present study was to investigate the effects of melatonin on human GC cells and determine the underlying molecular mechanism. We treated SGC-7901 GC cells with melatonin and analyzed the resulting protein changes using protein chip technology. Several proteins related to cell apoptosis and proliferation were identified and further tested in SGC-7901 GC cells. We found that melatonin induced cell cycle arrest and the downregulation of CDC25A, phospho-CDC25A (at Ser75), p21 (p21Cip1/p21Waf1) and phospho-p21 (at Thr145). Melatonin also induced upregulation of Bax, downregulation of Bcl-xL, an increase in cleaved caspase-9 level and activation of caspase-3, which confirmed the involvement of the mitochondria in melatonin­induced apoptosis. Upstream regulators of the above proteins, MDM2, phospho-MDM2 (at Ser166) and AKT, phospho-AKT (at Thr308) were all attenuated by melatonin, which led to an increase in p53. The present study demonstrated that the oncostatic effects of melatonin on SGC-7901 GC cells are mediated via the blockade of the AKT/MDM2 intracellular pathway.


Assuntos
Melatonina/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Neoplasias Gástricas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/genética , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
19.
Nat Biotechnol ; 35(6): 543-550, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459452

RESUMO

Specifically targeting genomic rearrangements and mutations in tumor cells remains an elusive goal in cancer therapy. Here, we used Cas9-based genome editing to introduce the gene encoding the prodrug-converting enzyme herpes simplex virus type 1 thymidine kinase (HSV1-tk) into the genomes of cancer cells carrying unique sequences resulting from genome rearrangements. Specifically, we targeted the breakpoints of TMEM135-CCDC67 and MAN2A1-FER fusions in human prostate cancer or hepatocellular carcinoma cells in vitro and in mouse xenografts. We designed one adenovirus to deliver the nickase Cas9D10A and guide RNAs targeting the breakpoint sequences, and another to deliver an EGFP-HSV1-tk construct flanked by sequences homologous to those surrounding the breakpoint. Infection with both viruses resulted in breakpoint-dependent expression of EGFP-tk and ganciclovir-mediated apoptosis. When mouse xenografts were treated with adenoviruses and ganciclovir, all animals showed decreased tumor burden and no mortality during the study. Thus, Cas9-mediated suicide-gene insertion may be a viable genotype-specific cancer therapy.


Assuntos
Proteínas de Bactérias/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Rearranjo Gênico/genética , Genes Transgênicos Suicidas/genética , Terapia Genética/métodos , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Animais , Apoptose/genética , Proteína 9 Associada à CRISPR , Linhagem Celular Tumoral , Marcação de Genes/métodos , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias Experimentais/patologia
20.
Gastroenterology ; 153(4): 1120-1132.e15, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28245430

RESUMO

BACKGROUND & AIMS: Human tumors and liver cancer cell lines express the product of a fusion between the first 13 exons in the mannosidase α class 2A member 1 gene (MAN2A1) and the last 6 exons in the FER tyrosine kinase gene (FER), called MAN2A1-FER. We investigated whether MAN2A1-FER is expressed by human liver tumors and its role in liver carcinogenesis. METHODS: We performed reverse transcription polymerase chain reaction analyses of 102 non-small cell lung tumors, 61 ovarian tumors, 70 liver tumors, 156 glioblastoma multiform samples, 27 esophageal adenocarcinomas, and 269 prostate cancer samples, as well as 10 nontumor liver tissues and 20 nontumor prostate tissues, collected at the University of Pittsburgh. We also measured expression by 15 human cancer cell lines. We expressed a tagged form of MAN2A1-FER in NIH3T3 and HEP3B (liver cancer) cells; Golgi were isolated for analysis. MAN2A1-FER was also overexpressed in PC3 or DU145 (prostate cancer), NIH3T3 (fibroblast), H23 (lung cancer), and A-172 (glioblastoma multiforme) cell lines and knocked out in HUH7 (liver cancer) cells. Cells were analyzed for proliferation and in invasion assays, and/or injected into flanks of severe combined immunodeficient mice; xenograft tumor growth and metastasis were assessed. Mice with hepatic deletion of PTEN were given tail-vein injections of MAN2A1-FER. RESULTS: We detected MAN2A1-FER messenger RNA and fusion protein (114 kD) in the hepatocellular carcinoma cell line HUH7, as well as in liver tumors, esophageal adenocarcinoma, glioblastoma multiforme, prostate tumors, non-small cell lung tumors, and ovarian tumors, but not nontumor prostate or liver tissues. MAN2A1-FER protein retained the signal peptide for Golgi localization from MAN2A1 and translocated from the cytoplasm to Golgi in cancer cell lines. MAN2A1-FER had tyrosine kinase activity almost 4-fold higher than that of wild-type FER, and phosphorylated the epidermal growth factor receptor at tyrosine 88 in its N-terminus. Expression of MAN2A1-FER in 4 cell lines led to epidermal growth factor receptor activation of BRAF, MEK, and AKT; HUH7 cells with MAN2A1-FER knockout had significant decreases in phosphorylation of these proteins. Cell lines that expressed MAN2A1-FER had increased proliferation, colony formation, and invasiveness and formed larger (>2-fold) xenograft tumors in mice, with more metastases, than cells not expressing the fusion protein. HUH7 cells with MAN2A1-FER knockout formed smaller xenograft tumors, with fewer metastases, than control HUH7 cells. HUH7, A-172, and PC3 cells that expressed MAN2A1-FER were about 2-fold more sensitive to the FER kinase inhibitor crizotinib and the epidermal growth factor receptor kinase inhibitor canertinib; these drugs slowed growth of xenograft tumors from MAN2A1-FER cells and prevented their metastasis in mice. Hydrodynamic tail-vein injection of MAN2A1-FER resulted in rapid development of liver cancer in mice with hepatic disruption of Pten. CONCLUSIONS: Many human tumor types and cancer cell lines express the MAN2A1-FER fusion, which increases proliferation and invasiveness of cancer cell lines and has liver oncogenic activity in mice.


Assuntos
Antineoplásicos/farmacologia , Transformação Celular Neoplásica/genética , Fusão Gênica , Neoplasias Hepáticas/genética , Proteínas de Fusão Oncogênica/genética , Oncogenes , Proteínas Tirosina Quinases/genética , alfa-Manosidase/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Crizotinibe , Relação Dose-Resposta a Droga , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Complexo de Golgi/enzimologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Camundongos SCID , Morfolinas/farmacologia , Células NIH 3T3 , Invasividade Neoplásica , Transplante de Neoplasias , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Interferência de RNA , Fatores de Tempo , Transfecção , Carga Tumoral , alfa-Manosidase/antagonistas & inibidores , alfa-Manosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA