Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 36(7): e23060, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355364

RESUMO

In this study, we explored to detect the effects and mechanism of bone-marrow-derived mesenchymal stem cells (BMSCs) on ventilator-induced lung injury (VILI). We transplanted BMSCs in mice and then induced VILI using mechanical ventilation (MV) treatment. The pathological changes, the content of PaO2 and PaCO2 , wet/dry weight ratio (W/D) of the lung, levels of tumor necrosis factor-α and interleukin-6 in bronchoalveolar lavage fluid, and apoptosis were detected. The autophagy-associated factor p62, LC3, and Beclin-1 expression were analyzed by western blot. The quantitative polymerase chain reaction was applied to detect abnormally expressed microRNAs, including miR-155-5p. Subsequently, we overexpressed miR-155-5p in VILI mice to detect the effects of miR-155-5p on MV-induced lung injury. Then, we carried out bioinformatics analysis to verify the BMSCs-regulated miR-155-5p that target messenger RNA. It was observed that BMSCs transplantation mitigated the severity of VILI in mice. BMSCs transplantation reduced lung inflammation, strengthened the arterial oxygen partial pressure, and reduced apoptosis and the W/D of the lung. BMSCs promoted autophagy of pulmonary endothelial cells accompanied by decreased p62 and increased LC3 II/I and Beclin-1. BMSCs increased the levels of miR-155-5p in VILI mice. Overexpression of miR-155-5p alleviated lung injury in VILI mice following reduced apoptosis and increased autophagy. Finally, TAB2 was identified as a downstream target of miR-155-5p and regulated by miR-155-5p. BMSCs may protect lung tissues from MV-induced injury, inhibit lung inflammation, promote autophagy through upregulating of miR-155-5p.


Assuntos
Transplante de Células-Tronco Mesenquimais , MicroRNAs , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Autofagia , Proteína Beclina-1 , Células Endoteliais/metabolismo , Camundongos , MicroRNAs/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia
2.
Int J Biochem Cell Biol ; 45(7): 1186-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23583663

RESUMO

Viroporins are a group of viral proteins that participate in viral replication cycles, including modification of membrane permeability and promotion of viral release. Although biological data have been accumulated on viroporion-like proteins of other viruses belonging to family Flaviviridae, the viroporin activity and membrane topology of p7 protein from classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, are largely unknown. In this study, sequence analysis of the primary structure of p7 polypeptide demonstrates that p7 contains two putative transmembrane regions connected by a short hydrophilic segment. Expression of p7 protein in Escherichia coli leads to the permeabilization of bacterial cells to small molecules. The p7 protein also enhances the permeability of mammalian cells, increasing the intracellular Ca(2+) concentration and the permeability of cells to the translation inhibitor Hygromycin B. This protein is an integral membrane protein and can form homo-oligomers. It mainly localizes to the ER at the early stage of the expression and can be transferred to the plasma membrane at the late stage of the expression. Detergent permeabilization assays confirmed that the p7 protein is a 2-pass transmembrane protein and its N and C termini are exposed to the ER lumen. Deletion analysis showed that amino acid residues 41-63 may be essential for the viroporin activity of the protein. Our studies demonstrate that CSFV p7 possesses properties commonly associated with viroporins, which could be a potential target for the development of a therapeutic intervention for classic swine fever virus infection.


Assuntos
Permeabilidade da Membrana Celular , Vírus da Febre Suína Clássica/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos , Linhagem Celular , Membrana Celular/metabolismo , Higromicina B , Proteínas de Membrana/metabolismo , Análise de Sequência de Proteína , Suínos , Liberação de Vírus , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA