Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Anal Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770734

RESUMO

As an important disease biomarker, the development of sensitive detection strategies for miRNA, especially intracellular miRNA imaging strategies, is helpful for early diagnosis of diseases, pathological research, and drug development. Hybridization chain reaction (HCR) is widely used for miRNA imaging analysis because of its high specificity and lack of biological enzymes. However, the classic HCR reaction exhibits linear amplification with low efficiency, limiting its use for the rapid analysis of trace miRNA in living cells. To address this problem, we proposed a toehold-mediated exponential HCR (TEHCR) to achieve highly sensitive and efficient imaging of miRNA in living cells using ß-FeOOH nanoparticles as transfection vectors. The detection limit of TEHCR was as low as 92.7 fM, which was 8.8 × 103 times lower compared to traditional HCR, and it can effectively distinguish single-base mismatch with high specificity. The TEHCR can also effectively distinguish the different expression levels of miRNA in cancer cells and normal cells. Furthermore, TEHCR can be used to construct OR logic gates for dual miRNA analysis without the need for additional probes, demonstrating high flexibility. This method is expected to play an important role in clinical miRNA-related disease diagnosis and drug development as well as to promote the development of logic gates.

2.
Anal Chem ; 96(17): 6774-6783, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38634427

RESUMO

The identification of a specific tumor cell is crucial for the early diagnosis and treatment of cancer. However, it remains a challenge due to the limited sensitivity and accuracy, long response time, and low contrast of the recent approaches. In this study, we develop a dual miRNA-triggered DNA walker (DMTDW) assisted by APE1 for the specific recognition of tumor cells. miR-10b and miR-155 were selected as the research models. Without miR-10b and miR-155 presence, the DNA walker remains inactive as its walking strand of W is locked by L1 and L2. After miR-10b and miR-155 are input, the DNA walker is triggered as miR-10b and miR-155 bind to L1 and L2 of W-L1-L2, respectively, unlocking W. The DNA walker is driven by endogenous APE1 that is highly catalytic and is highly expressed in the cytoplasm of tumor cells but barely expressed in normal cells, ensuring high contrast and reaction efficiency for specific recognition of tumor cells. Dual miRNA input is required to trigger the DNA walker, making this strategy with a high accuracy. The DMTDW strategy exhibited high sensitivity for miRNA analysis with a detection limit of 44.05 pM. Living cell-imaging experiments confirmed that the DMTDW could effectively respond to the fluctuation of miRNA and specifically identified MDA-MB-231 cells from different cell lines. The proposed DMTDW is sensitive, rapid, and accurate for specific tumor cell recognition. We believe that the DMTDW strategy can become a powerful diagnostic tool for the specific recognition of tumor cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , MicroRNAs , MicroRNAs/análise , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Linhagem Celular Tumoral
3.
Adv Sci (Weinh) ; 11(7): e2306298, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064101

RESUMO

Pancreatic cancer (PCa) is one of the most fatal human malignancies. The enhanced infiltration of stromal tissue into the PCa tumor microenvironment limits the identification of key tumor-specific transcription factors and epigenomic abnormalities in malignant epithelial cells. Integrated transcriptome and epigenetic multiomics analyses of the paired PCa organoids indicate that the basic helix-loop-helix transcription factor 40 (BHLHE40) is significantly upregulated in tumor samples. Increased chromatin accessibility at the promoter region and enhanced mTOR pathway activity contribute to the elevated expression of BHLHE40. Integrated analysis of chromatin immunoprecipitation-seq, RNA-seq, and high-throughput chromosome conformation capture data, together with chromosome conformation capture assays, indicate that BHLHE40 not only regulates sterol regulatory element-binding factor 1 (SREBF1) transcription as a classic transcription factor but also links the enhancer and promoter regions of SREBF1. It is found that the BHLHE40-SREBF1-stearoyl-CoA desaturase axis protects PCa cells from ferroptosis, resulting in the reduced accumulation of lipid peroxidation. Moreover, fatostatin, an SREBF1 inhibitor, significantly suppresses the growth of PCa tumors with high expressions of BHLHE40. This study highlights the important roles of BHLHE40-mediated lipid peroxidation in inducing ferroptosis in PCa cells and provides a novel mechanism underlying SREBF1 overexpression in PCa.


Assuntos
Ferroptose , Neoplasias Pancreáticas , Humanos , Proteínas de Homeodomínio/genética , Ferroptose/genética , Fatores de Transcrição/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pancreáticas/genética , Microambiente Tumoral , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
5.
Front Endocrinol (Lausanne) ; 14: 1200932, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534207

RESUMO

Background: Sorafenib included in Chinese medical insurance is the earliest targeted drug for radioactive iodine refractory differentiated thyroid cancer (RR-DTC). This study is to further demonstrate the clinical efficacy and safety of sorafenib used in Zhujiang Hospital of Southern Medical University. Methods: RR-DTC patients treated at our Department of Nuclear Medicine in Zhujiang Hospital of Southern Medical University (October 2017-May 2020) were retrospectively analyzed. Treatment effects, progression-free survival (PFS), and adverse effects (AEs) during medication were evaluated. Results: Of the 31 patients included, 26 patients were evaluated for efficacy with a median follow-up time of 17.5 months (4.0-51.0 months). The disease control rate (DCR) was 57.7% (n = 15) and the objective response rate (ORR) was 26.9% (n = 7). Most patients with disease control had thyroglobulin decreases of more than 60% (p = 0.004), ORRs were favorable in patients with lung metastasis and lung-only metastasis (p = 0.010 and 0.001, respectively). The PFS of the 26 patients analyzed was 16.5 months (95%CI: 14.41 -23.90 months). In the subgroup analysis, female, patients with lung-only metastasis, hand-foot skin syndrome (HFS), and thyroglobulin response ≥ 60% observed longer PFS (p = 0.038, 0.045, 0.035, and 0.000, respectively), while patients with bone metastasis had lower PFS (p = 0.035). The most common toxicity profile was HFS (93.5%), followed by diarrhea (83.9%), alopecia (74.2%). All the side effects were mainly grade 1-2. Grade 3-4 adverse reactions were more common in diarrhea and HFS. Conclusions: Sorafenib has promising efficacy in RR-DTC, especially in patients with lung metastasis and lung-only metastasis. The AEs of sorafenib were generally mild, and the main AE was HFS.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias da Glândula Tireoide , Humanos , Feminino , Sorafenibe/efeitos adversos , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/induzido quimicamente , Tireoglobulina , Radioisótopos do Iodo/efeitos adversos , Antineoplásicos/efeitos adversos , Estudos Retrospectivos , Compostos de Fenilureia/efeitos adversos , Diarreia , Adenocarcinoma/tratamento farmacológico
7.
Adv Healthc Mater ; 12(28): e2301366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37515813

RESUMO

Periodontitis is a prevalent dental disease marked by progressive destruction of tooth-supporting tissues, and the recovery of bone defects after periodontitis remains challenging. Although stem cell-based therapy is a promising treatment for periodontal tissue regeneration, the function of mesenchymal stem cells is constantly impaired by the inflammatory microenvironment, leading to compromised treatment outcomes. Herein, calcitonin gene-related peptide (CGRP)-loaded porous microspheres (PMs) are prepared to protect bone marrow mesenchymal stem cells (BMSCs) against inflammatory mediators in periodontitis. The released CGRP can effectively ameliorate the inflammation-induced dysfunction of BMSCs, which may involve suppressing the ROS (reactive oxygen species)/NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3)/Caspase-1 (CASP1) pathway. Moreover, the porous architecture of PMs provides effective cell-carrying capacity and physical protection for BMSCs during transplantation. In vivo experiments demonstrate that CGRP/BMSC-loaded PMs can effectively inhibit inflammation and improve osteogenic activity, resulting in better periodontal bone regeneration. This study focuses on the protection of stem cell function in the inflammatory microenvironment, which is important for stem cell-mediated tissue regeneration and repair under inflammatory conditions.


Assuntos
Células-Tronco Mesenquimais , Periodontite , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Microesferas , Porosidade , Regeneração Óssea , Periodontite/tratamento farmacológico , Periodontite/metabolismo , Osteogênese , Células-Tronco Mesenquimais/metabolismo , Inflamação/metabolismo , Diferenciação Celular
8.
J Nanobiotechnology ; 21(1): 153, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37189121

RESUMO

Lung cancer is a prevalent cancer type worldwide that often remains asymptomatic in its early stages and is frequently diagnosed at an advanced stage with a poor prognosis due to the lack of effective diagnostic techniques and molecular biomarkers. However, emerging evidence suggests that extracellular vesicles (EVs) may promote lung cancer cell proliferation and metastasis, and modulate the anti-tumor immune response in lung cancer carcinogenesis, making them potential biomarkers for early cancer detection. To investigate the potential of urinary EVs for non-invasive detection and screening of patients at early stages, we studied metabolomic signatures of lung cancer. Specifically, we conducted metabolomic analysis of 102 EV samples and identified metabolome profiles of urinary EVs, including organic acids and derivatives, lipids and lipid-like molecules, organheterocyclic compounds, and benzenoids. Using machine learning with a random forest model, we screened for potential markers of lung cancer and identified a marker panel consisting of Kanzonol Z, Xanthosine, Nervonyl carnitine, and 3,4-Dihydroxybenzaldehyde, which exhibited a diagnostic potency of 96% for the testing cohort (AUC value). Importantly, this marker panel also demonstrated effective prediction for the validation set, with an AUC value of 84%, indicating the reliability of the marker screening process. Our findings suggest that the metabolomic analysis of urinary EVs provides a promising source of non-invasive markers for lung cancer diagnostics. We believe that the EV metabolic signatures could be used to develop clinical applications for the early detection and screening of lung cancer, potentially improving patient outcomes.


Assuntos
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Reprodutibilidade dos Testes , Detecção Precoce de Câncer , Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Vesículas Extracelulares/metabolismo
9.
Int Endod J ; 56(7): 837-853, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37070646

RESUMO

AIM: To investigate the regulatory role of miR-155 and Kinesin Superfamily Proteins-5C (KIF-5C) in the progression of pulpitis based on bioinformatic analysis. METHODOLOGY: Normal pulp tissues and pulpitis pulp tissues were collected and subjected to high-throughput sequencing and the differentially expressed miRNAs were determined. An in vitro and in vivo pulpitis model was established. HE, IHC staining and histological evaluation were used to verify the inflammatory state of human and mouse pulp tissues. The mRNA expression of IL-1ß and TGF-ß1 were determined by RT-qPCR and protein expression of IL-1α, IL-4, IL-8, IL-13, IFN-γ, IL-6, IL-10 and MCP-1 were determined by protein chip. The target genes of miR-155 were predicted by miRanda database and verified by Dual-luciferase reporter assay, RT-qPCR and western blotting. MiR-155 lentivirus were used to upregulate or downregulate miR-155 and the siRNA of KIF-5C was used to downregulate KIF-5C. The expression of miR-155 or KIF-5C was determined by RT-qPCR. All statistics were analysed using GraphPad prism 8.2. RESULTS: The high-throughput sequencing results showed that 6 miRNAs (miR-155, miR-21, miR-142, miR-223, miR-486, miR-675) were significantly upregulated in diseased human pulp tissues, and miR-155 was significantly elevated among the six miRNAs. RT-qPCR results demonstrated that miR-155 expression was upregulated in human pulpitic tissue, mice pulpitic tissue and LPS-HDPCs. IL-1ß was increased while TGF-ß1 was decreased in lenti-miR-155 transfected LPS-HDPCs. Analysis of protein chip results indicated that lenti-miR-155 transfected LPS-HDPCs produced higher levels of IL-8, IL-6, MCP-1. The opposite results were obtained when miR-155 was inhibited. Through miRanda database screen and Dual-luciferase reporter assay, the target gene (KIF-5C) of miR-155 was identified. In lenti-miR-155 transfected LPS-HDPCs, the expression of KIF-5C was downregulated. However, when shRNA-miR-155 was transfected to LPS-HDPCs, the opposite result was obtained. Silent RNA was used to knock down KIF-5C, the results showed that when both KIF-5C and miR-155 were knocked down simultaneously, the downregulated expression of inflammatory factors observed in LPS-HDPCs following miR-155 knockdown was rescued. CONCLUSION: MiR-155 plays an important role in promoting pulpitis through targeting KIF-5C and may serve as a potential therapeutic target.


Assuntos
MicroRNAs , Pulpite , Humanos , Camundongos , Animais , Pulpite/genética , Pulpite/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Lipopolissacarídeos/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Polpa Dentária/metabolismo , Luciferases/metabolismo
10.
Front Endocrinol (Lausanne) ; 14: 1094339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025409

RESUMO

Background: The size of lymph node metastasis (LNM) and pre-ablation stimulated Tg (ps-Tg) were key predictors of clinical prognosis in differentiated thyroid cancer (DTC) patients, however, very few studies combine the above two as predictors of clinical prognosis of DTC patients. Methods: Persistent/recurrent disease and clinicopathologic factors were analyzed in 543 DTC patients without distant metastases who underwent LN dissection, near-total/total thyroidectomy, and radioiodine ablation. Results: In the multivariate analysis, size of LNM, ps-Tg, and the activity of 131I significantly correlated with long-term remission. The optimal cutoff size of LNM 0.4 cm-1.4 cm (intermediate-risk patients) and >1.4cm (high-risk patients) increased the recurrence risk (hazard ratio [95% CI], 4.674 [2.881-7.583] and 13.653 [8.135-22.913], respectively). Integration of ps-Tg into the reclassification risk stratification showed that ps-Tg ≤ 10.0 ng/mL was relevant to a greatly heightened possibility of long-term remission (92.2%-95.4% in low-risk patients, 67.3%-87.0% in intermediate-risk patients, and 32.3%-57.7% in high-risk patients). Conclusion: The cutoff of 0.4 cm and 1.4 cm for a definition of size of LNM in DTC patients without distant metastases can reclassify risk assessment, and incorporating ps-Tg could more effectively predict clinical outcomes and modify the postoperative management plan.


Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Metástase Linfática , Radioisótopos do Iodo/uso terapêutico , Tireoglobulina , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/patologia , Tireoidectomia , Adenocarcinoma/cirurgia
11.
ACS Nano ; 17(9): 8564-8574, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36988967

RESUMO

The occurrence of acute pancreatitis (AP) is increasing significantly worldwide. However, current diagnostic methods of AP do not provide a clear clinical stratification of severity, and the prediction of complications in AP is still limited. Here, we present a robust AP identification and diagnosis (RAPIDx) method by the proteomic fingerprinting of intact nanoscale extracellular vesicles (EVs) from clinical samples. By tracking analysis of circulating biological nanoparticles released by cells (i.e., EVs) via bottom-up proteomics, we obtain close phenotype connections between EVs, cell types, and multiple tissues based on their specific proteomes and identify the serum amyloid A (SAA) proteins on EVs as potential biomarkers that are differentially expressed from AP patients significantly. We accomplish the quantitative analysis of EVs fingerprints using MALDI-TOF MS and find the SAA proteins (SAA1-1, desR-SAA1-2, SAA2, SAA1-2) with areas under the curve (AUCs) from 0.92 to 0.97, which allows us to detect AP within 30 min. We further realize that SAA1-1 and SAA2, combined with two protein peaks (5290.19, 14032.33 m/z), can achieve an AUC of 0.83 for classifying the severity of AP. The RAPIDx platform will facilitate timely diagnosis and treatment of AP before severity development and persistent organ failure and promote precision diagnostics and the early diagnosis of pancreatic cancer.


Assuntos
Pancreatite , Proteômica , Humanos , Doença Aguda , Pancreatite/diagnóstico , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
12.
Gastric Cancer ; 26(3): 364-378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36738390

RESUMO

BACKGROUND: The prognosis of advanced gastric cancer (GC) invading the gastric serosa remains poor, mainly owing to high incidence of peritoneal recurrence. Patients with peritoneal metastases are often treated with neoadjuvant intraperitoneal and systemic chemotherapies (NIPS). Good responders to NIPS often undergo conversion gastrectomy. This study aims to explore biomarkers predicting the occurrence of peritoneal metastasis (PM) and evaluating the efficacy of NIPS in GC patients. METHODS: We collected six peritoneal lavage (PL) samples from two patients with PM, two without PM, and two with diminished PM after NIPS via intraperitoneal access ports. We equally isolated microRNAs from exosomes derived from PL samples for deep sequencing. Two microRNAs (hsa-let-7g-3p and hsa-miR-10395-3p) were identified, and their expression levels were examined in PL samples of 99 GC patients using qRT-PCR. Moreover, we performed in vivo and in vitro functional assays to investigate effects of these microRNAs on metastasis and chemoresistance of GC cells. RESULTS: Exosomal microRNA expression profiling of six PL samples indicated that the microRNA signature in exosomes of PLs from patients with diminished PM was similar to that from patients without PM. Expression levels of hsa-let-7g-3p and hsa-miR-10395-3p were associated with PM. In vivo and in vitro functional assays confirmed that hsa-let-7g-3p and hsa-miR-10395-3p are involved in GC metastasis and chemoresistance. CONCLUSION: PL-derived exosomes in GC contain large amounts of microRNAs related to PM. Moreover, hsa-let-7g-3p and hsa-miR-10395-3p could be used as biomarkers predicting PM and NIPS efficacy and are involved in GC metastasis and chemoresistance.


Assuntos
Exossomos , MicroRNAs , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Lavagem Peritoneal , Terapia Neoadjuvante , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores , Exossomos/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Biosens Bioelectron ; 225: 115088, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739741

RESUMO

Esophageal cancer is a malignant tumor with two-thirds of patients having a local recurrence or distant metastasis. To date, diagnostic biomarkers with high sensitivity and specificity are lacking. Extracellular vesicles (EVs) have shown their potential values as disease biomarkers as they carry specific proteins and RNAs derived from cancer cells. In this study, we investigate ESCC precision diagnostics from the insights of circulating EVs, and integrate the ultrafast EV isolation approach (EXODUS) and ELISA for fast detection and screening of ESCC patients. First, we isolate and characterize the high-purity plasma EVs with EXODUS and identify 401 proteins and 372 proteins from ESCC patient and healthy individuals, respectively. Further looking into the differentially expressed proteins (DEPs) of ESCC patients and enriched KEGG pathways, we discover EV-CD14 as a potential diagnostic biomarker for ESCC, which has been further validated as a significantly differentially expressed protein by Western Blot and immunogold labelling TEM. For fast screening and detection of ESCC towards clinical applications, we apply ELISA method to diagnose ESCC from 60 clinical samples based on circulating EV-CD14, which shows a high AUC value up to 96.0% for detection of ESCC in a test set (30 samples), and displays a high accuracy rate up to 90% for prediction of ESCC in a screening test (30 samples). Our results suggest that the circulating EV-CD14 may highly be related to the initiation and progression of ESCC, providing a novel method for the diagnosis and prognosis of ESCC towards clinical translations.


Assuntos
Técnicas Biossensoriais , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Neoplasias Esofágicas/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/patologia , Biomarcadores Tumorais , Prognóstico
14.
Ann Nucl Med ; 37(1): 18-25, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36318362

RESUMO

BACKGROUND: For differentiated thyroid cancer (DTC) patients with thyroglobulin (Tg) elevation and negative iodine scintigraphy (commonly termed "TENIS" syndrome) after thyroidectomy, radioactive iodine (RAI) therapy, and thyroid-stimulating hormone (TSH) suppression therapy, empirical RAI therapy may be considered. However, the outcome data of TENIS syndrome without structural disease after empirical RAI therapy have not shown clear evidence of improvement in survival. We assessed the efficacy of such empirical RAI therapy in TENIS syndrome without structural disease and evaluated the progression-free survival (PFS). METHODS: A total of 80 papillary thyroid cancer (PTC) patients with TENIS syndrome without structural disease were included in this retrospective study. 52 patients were treated with empirical RAI therapy while another 28 patients were untreated. The progression-free survival (PFS) of both groups was defined as the main outcome. The secondary outcome was the comparison of serum Tg levels 12 months after being diagnosed as TENIS syndrome. RESULTS: The PFS of the empirical RAI therapy group was better than the untreated group (p < 0.001). Moreover, there was significant difference in Tg normalization between patients treated with empirical therapy and without treatment (p = 0.001). Empirical RAI therapy (p = 0.001) predicts better PFS. Male gender (p = 0.041) and empirical RAI therapy (p = 0.002) predict better remission in serum Tg level. CONCLUSION: Patients with TENIS syndrome without structural disease can benefit from empirical RAI therapy in both PFS and Tg normalization.


Assuntos
Adenocarcinoma , Iodo , Neoplasias da Glândula Tireoide , Humanos , Masculino , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/radioterapia , Tireoglobulina , Radioisótopos do Iodo/uso terapêutico , Estudos Retrospectivos , Tireoidectomia , Cintilografia
15.
Environ Sci Pollut Res Int ; 30(3): 7801-7812, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36044143

RESUMO

Environmental pollution and climate change have become nontraditional global security threats. As China's economy grows, the country faces an increasing number of challenges associated with improving atmospheric quality and reducing greenhouse gas emissions. Based on China's dynamic noncompetitive input-output tables and data on energy consumption and emissions from 1994 to 2016, a hybrid input-output model is constructed to identify high-energy-consuming sectors and to quantify the impact of industrial restructuring on the intensity of air pollutant and greenhouse gas emissions from these sectors. The empirical results indicate that the impact of industrial restructuring on the intensity of air pollutant and greenhouse gas emissions from high-energy-consuming sectors was nonlinear and has undergone a "promotion reduction" shift. This study also found that the impact of industrial restructuring is more significant on the intensity of greenhouse gas emissions than on the intensity of air pollutant emissions; furthermore, the reduction in greenhouse gas emission intensity achieved by industrial restructuring after 2008 began to show results. Based on the findings of this study, we make recommendations such as the need for the Chinese government to continue to promote supply-side structural reforms in the energy sector.


Assuntos
Poluentes Atmosféricos , Gases de Efeito Estufa , Poluentes Atmosféricos/análise , Poluição Ambiental , Mudança Climática , China , Dióxido de Carbono/análise
16.
Cells ; 11(24)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36552777

RESUMO

Dynein axonemal heavy chain 5 (DNAH5) is the most mutated gene in primary ciliary dyskinesia (PCD), leading to abnormal cilia ultrastructure and function. Few studies have revealed the genetic characteristics and pathogenetic mechanisms of PCD caused by DNAH5 mutation. Here, we established a child PCD airway organoid directly from the bronchoscopic biopsy of a patient with the DNAH5 mutation. The motile cilia in the organoid were observed and could be stably maintained for an extended time. We further found abnormal ciliary function and a decreased immune response caused by the DNAH5 mutation through single-cell RNA sequencing (scRNA-Seq) and proteomic analyses. Additionally, the directed induction of the ciliated cells, regulated by TGF-ß/BMP and the Notch pathway, also increased the expression of inflammatory cytokines. Taken together, these results demonstrated that the combination of multiomics analysis and organoid modelling could reveal the close connection between the immune response and the DNAH5 gene.


Assuntos
Dineínas do Axonema , Síndrome de Kartagener , Criança , Humanos , Dineínas do Axonema/genética , Síndrome de Kartagener/genética , Fator de Crescimento Transformador beta , Multiômica , Proteômica , Organoides , Diferenciação Celular/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-36232273

RESUMO

Adjusting transportation structure to reduce the intensity of greenhouse gas emissions is an effective way to address climate change issues. This paper selects six transport sectors and constructs a hybrid input-output model to study the impact of transportation restructuring on the intensity of CO2 and non-CO2 greenhouse gas emissions in each sector during different periods. The results show that the effect of transportation restructuring on greenhouse gas emissions is manifested differently in different time periods. After 2008, transportation restructuring had a significant effect on reducing the intensity of greenhouse gas emissions in all sectors. However, the impact of transportation restructuring on the intensity of non-CO2 greenhouse gas emissions is limited. It is also found that the railway transport sector has been a low-impact transport sector in terms of greenhouse gas emissions since 2004, which provides insights for the optimization of China's transportation structure.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , China , Efeito Estufa , Gases de Efeito Estufa/análise , Meios de Transporte
18.
Cell Death Dis ; 13(6): 559, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729109

RESUMO

Primary cilia dyskinesia (PCD) is a rare genetic disease caused by ciliary structural or functional defects. It causes severe outcomes in patients, including recurrent upper and lower airway infections, progressive lung failure, and randomization of heterotaxy. To date, although 50 genes have been shown to be responsible for PCD, the etiology remains elusive. Meanwhile, owing to the lack of a model mimicking the pathogenesis that can be used as a drug screening platform, thereby slowing the development of related therapies. In the current study, we identified compound mutation of DNAH9 in a patient with PCD with the following clinical features: recurrent respiratory tract infections, low lung function, and ultrastructural defects of the outer dynein arms (ODAs). Bioinformatic analysis, structure simulation assay, and western blot analysis showed that the mutations affected the structure and expression of DNAH9 protein. Dnah9 knock-down (KD) mice recapitulated the patient phenotypes, including low lung function, mucin accumulation, and increased immune cell infiltration. Immunostaining, western blot, and co-immunoprecipitation analyses were performed to clarify that DNAH9 interacted with CCDC114/GAS8 and diminished their protein levels. Furthermore, we constructed an airway organoid of Dnah9 KD mice and discovered that it could mimic the key features of the PCD phenotypes. We then used organoid as a drug screening model to identify mitochondrial-targeting drugs that can partially elevate cilia beating in Dnah9 KD organoid. Collectively, our results demonstrated that Dnah9 KD mice and an organoid model can recapture the clinical features of patients with PCD and provide an excellent drug screening platform for human ciliopathies.


Assuntos
Dineínas do Axonema , Discinesias , Síndrome de Kartagener , Animais , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Cílios/metabolismo , Avaliação Pré-Clínica de Medicamentos , Dineínas/metabolismo , Discinesias/metabolismo , Discinesias/patologia , Humanos , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Camundongos , Mutação/genética , Organoides/metabolismo
19.
Clin Transl Med ; 12(2): e654, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35184402

RESUMO

BACKGROUND: Tumour-associated macrophages (TAMs) play an important role in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to study the epigenetic mechanisms in regulating pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment. METHODS: This study was conducted based on ex vivo TAMs isolated from PDAC tissues and in vitro THP1-derived TAM model. RNA-sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing and chromatin immunoprecipitation sequencing were performed to investigate gene expression, chromatin accessibility, transcription factor binding sites and histone modifications. Gene knockdown in THP1-derived TAMs was performed with lentivirus, and the impact of THP1-derived TAMs on invasion and metastasis ability of PDAC cells were investigated with in vitro and in vivo functional assays. RNA-chromatin interaction was analysed by chromatin isolation through RNA purification with sequencing. RNA-protein interaction was studied by RNA immunoprecipitation and RNA pull-down. RESULTS: Our data showed that the transcription factor CTCF (CCCTC-binding factor) was highly expressed in TAMs and predicted to be significantly enriched in hyper-accessible chromatin regions when compared to monocytes. High infiltration of CTCF+ TAMs was significantly associated with poor prognosis in PDAC patients. Knockdown of CTCF in THP1-derived TAMs led to the down-regulation of specific markers for M2-polarised TAMs, including CD206 and CD163. When THP1-derived TAMs with CTCF knockdown, they showed a decreased ability of invasion and metastasis. Further integrative analysis of multi-omics data revealed that prostaglandin-endoperoxide synthase 2 (PTGS2) and PTGS2 antisense NF-κB1 complex-mediated expression regulator RNA (PACERR) were critical downstream targets of CTCF and positively correlated with each other, which are closely situated on a chromosome. Knockdown of PACERR exhibited a similar phenotype as observed in CTCF knockdown THP1-derived TAMs. Moreover, PACERR could directly bind to CTCF and recruit histone acetyltransferase E1A binding protein p300 to the promoter regions of PACERR and PTGS2, thereby enhancing histone acetylation and gene transcription, promoting the M2 polarization of TAMs in PDAC. CONCLUSIONS: Our study demonstrated a novel epigenetic regulation mechanism of promoting pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment.


Assuntos
Carcinoma Ductal Pancreático/genética , Ciclo-Oxigenase 2/efeitos dos fármacos , Proteína p300 Associada a E1A/efeitos adversos , Macrófagos/metabolismo , Idoso , Fator de Ligação a CCCTC/agonistas , Fator de Ligação a CCCTC/biossíntese , Carcinoma Ductal Pancreático/metabolismo , Ciclo-Oxigenase 2/genética , Proteína p300 Associada a E1A/metabolismo , Proteína p300 Associada a E1A/farmacologia , Feminino , Humanos , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
20.
Endocr Connect ; 11(3)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35175222

RESUMO

To evaluate the locoregional progression-free survival (LPFS) of bone metastatic lesions from differentiated thyroid cancer (DTC) after radioiodine therapy (RAIT) and to define its influencing factors, we performed a retrospective cohort analysis of 89 patients with bone metastases from DTC who received RAIT in our department over a 17-year period. The median follow-up time was calculated using the reverse Kaplan-Meier method. The log-rank test and a multivariate Cox proportional hazards regression model were performed in the analysis of prognostic indicators for LPFS. In this research, the median follow-up time for all patients was 47 (95% CI, 35.752-58.248) months, and that for patients with no progression was 42 months. The longest follow-up time was 109 months. The median LPFS time was 58 (95% CI, 32.602-83.398) months, and the 3- and 5-year LPFS probabilities were 57.8 and 45.1%, respectively. Multivariate analysis revealed bone structural changes as an independent risk factor for LPFS (P= 0.004; hazard ratio, 49.216; 95% CI, 3.558-680.704). Furthermore, the non-total-lesion uptake subgroup presented a worse LPFS than the total-lesion uptake subgroup in patients with structural bone lesions (P = 0.027). RAIT can improve the LPFS of radioiodine-avid bone metastases from DTC, especially those without bone structural changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA