Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848533

RESUMO

The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, that translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and BMP6 treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver non-heme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 is a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.

2.
Neurosurgery ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847532

RESUMO

BACKGROUND AND OBJECTIVES: The current widely utilized clinical approach for severe intraventricular hemorrhage involves ventriculostomy with supportive drainage. The aim of our study was to evaluate the overall efficacy of neuroendoscopic hematoma removal combined with ventricular lavage as a treatment approach for severe intraventricular hemorrhage. METHODS: A prospective randomized controlled study was conducted, selecting a total of 98 patients with severe intraventricular hemorrhage at our hospital from February 2021 to November 2022. The patients were randomly distributed into 2 groups using a randomized number table method: the neuroendoscopic group (undergoing neuroendoscopic hematoma removal combined with ventricular lavage) and the control group (undergoing intraventricular trepanation and drainage), with 49 patients in each group. RESULTS: The neuroendoscopic group had significantly higher intraoperative blood loss than that of the control group (P = .037), while the drainage tube indwelling time and hospital stay in the neuroendoscopic group were significantly shorter (P < .001). At 6 hours (P = .021), 1 day (P = .002), 3 days (P < .001) and 7 days (P = .007) following surgery, the neuroendoscopic group exhibited evidently higher hematoma clearance rates compared with the control group. At 1 day and 3 days after surgery, the cerebrospinal fluid drainage volume in the neuroendoscopic group was significantly higher than that in the control group (P < .001), whereas at 7 days after surgery, it was significantly lower in the neuroendoscopic group compared with the control group (P < .001). Moreover, significantly lower incidence of intracranial infection (P = .045) and increased intracranial pressure (P = .008) was observed in the neuroendoscopic group compared with the control group. CONCLUSION: Neuroendoscopic hematoma removal combined with ventricle lavage emerged as an effective treatment strategy for severe intraventricular hemorrhage, yielding significant therapeutic benefits. Therefore, this approach holds promise for broader clinical application and promotion.

3.
J Gene Med ; 26(5): e3687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38690623

RESUMO

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Diferenciação Celular , Movimento Celular , Camundongos Knockout , MicroRNAs , Osteoclastos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citologia , Diferenciação Celular/genética , Movimento Celular/genética , Camundongos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Proliferação de Células/genética , Regulação da Expressão Gênica , Macrófagos/metabolismo , Transdução de Sinais , Osteogênese/genética
4.
Antioxidants (Basel) ; 13(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790704

RESUMO

BACKGROUND: The discovery of traditional plants' medicinal and nutritional properties has opened up new avenues for developing pharmaceutical and dietary strategies to prevent atherosclerosis. However, the effect of the antioxidant Dendrobium officinale polysaccharide (DOP) on atherosclerosis is still not elucidated. PURPOSE: This study aims to investigate the inhibitory effect and the potential mechanism of DOP on high-fat diet-induced atherosclerosis in Apolipoprotein E knockout (ApoE-/-) mice. STUDY DESIGN AND METHODS: The identification of DOP was measured by high-performance gel permeation chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR). We used high-fat diet (HFD)-induced atherosclerosis in ApoE-/- mice as an animal model. In the DOP intervention stage, the DOP group was treated by gavage with 200 µL of 200 mg/kg DOP at regular times each day and continued for eight weeks. We detected changes in serum lipid profiles, inflammatory factors, anti-inflammatory factors, and antioxidant capacity to investigate the effect of the DOP on host metabolism. We also determined microbial composition using 16S rRNA gene sequencing to investigate whether the DOP could improve the structure of the gut microbiota in atherosclerotic mice. RESULTS: DOP effectively inhibited histopathological deterioration in atherosclerotic mice and significantly reduced serum lipid levels, inflammatory factors, and malondialdehyde (F/B) production. Additionally, the levels of anti-inflammatory factors and the activity of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), were significantly increased after DOP intervention. Furthermore, we found that DOP restructures the gut microbiota composition by decreasing the Firmicutes/Bacteroidota (F/B) ratio. The Spearman's correlation analysis indicated that serum lipid profiles, antioxidant activity, and pro-/anti-inflammatory factors were associated with Firmicutes, Bacteroidota, Allobaculum, and Coriobacteriaceae_UCG-002. CONCLUSIONS: This study suggests that DOP has the potential to be developed as a food prebiotic for the treatment of atherosclerosis in the future.

5.
iScience ; 27(3): 109168, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439965

RESUMO

Distant metastasis is the main cause of death in patients with colorectal cancer (CRC). A better understanding of the mechanisms of metastasis can greatly improve the outcome of patients with CRC. Accumulating evidence suggests that circRNA plays pivotal roles in cancer progression and metastasis, especially acting as a miRNA sponge to regulate the expression of the target gene. A public database bioinformatics analysis found that miR-1825 was highly expressed in CRC tissues. In this study, miR-1825 was highly expressed in CRC tissues, which was positively correlated with lymph node metastasis and distant metastasis. In vitro and in vivo experiments confirmed that miR-1825 was positively correlated with the proliferation and migration of CRC cells. This event can be inhibited by circTBC1D22A. CircTBC1D22A can directly interact with miR-1825 and subsequently act as a miRNA sponge to regulate the expression of the target gene ATG14, which collectively advances the autophagy-mediated progression and metastasis of CRC.

6.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337620

RESUMO

Inconsistent findings exist regarding the relationship between heme iron intake and type 2 diabetes (T2D) among Western and Eastern populations. Easterners tend to consume a plant-based diet which is abundant in antioxidant minerals. To examine the hypothesis that antioxidant mineral may modify the relationship between iron and T2D, we performed a case-control study by measuring the serum mineral levels in 2198 Chinese subjects. A total of 2113 T2D patients and 2458 controls were invited; 502 T2D patients and 1696 controls were finally analyzed. In the total population, high serum iron showed a positive association with T2D odds (odds ratio [OR] = 1.27 [1.04, 1.55]); high magnesium (OR = 0.18 [0.14, 0.22]), copper (OR = 0.27 [0.21, 0.33]), zinc (OR = 0.37 [0.30, 0.46]), chromium (OR = 0.61 [0.50, 0.74]), or selenium concentrations (OR = 0.39 [0.31, 0.48]) were inversely associated with T2D odds. In contrast, in individuals with higher magnesium (>2673.2 µg/dL), zinc (>136.7 µg/dL), copper (>132.1 µg/dL), chromium (>14.0 µg/dL), or selenium concentrations (>16.8 µg/dL), serum iron displayed no association with T2D (p > 0.05). Serum copper and magnesium were significant modifiers of the association between iron and T2D in individuals with different physiological status (p < 0.05). Our findings support the idea that consuming a diet rich in antioxidant minerals is an effective approach for preventing T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Selênio , Humanos , Ferro , Antioxidantes , Magnésio , Cobre , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Casos e Controles , Minerais , Zinco , Cromo , China
7.
Crit Rev Immunol ; 44(2): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305332

RESUMO

Liquid-liquid phase separation (LLPS) impact immune signaling in cancer and related genes have shown prognostic value in breast cancer (BRCA). However, the crosstalk between LLPS and immune infiltration in BRCA remain unclear. Therefore, we aimed to develop a novel prognostic model of BRCA related to LLPS and immune infiltration. BRCA-related, liquid-liquid phase separation (LLPS)-related genes, and differentially expressed genes (DEGs) were identified using public databases. Mutation and drug sensitivity analyses were performed using Gene Set Cancer Analysis database. Univariate cox regression and LASSO Cox regression were used for the construction and verification of prognostic model. Kaplan-Meier analysis was performed to evaluate overall survival (OS). Gene set variation analysis was conducted to analyze key pathways. CIBERSORT was used to assess immune infiltration and its correlation with prognostic genes was determined through Pearson analysis. A total of 6056 BRCA-associated genes, 3775 LLPS-associated genes, and 4049 DEGs, resulting in 314 overlapping genes. Twenty-eight prognostic genes were screened, and some of them were mutational and related to drug sensitivity Subsequently, a prognostic model comprising L1CAM, EVL, FABP7, and CST1 was built. Patients in high-risk group had shorter OS than those in low-risk group. The infiltrating levels of CD8+ T cells, macrophages M0, macrophages M2, dendritic cells activated, and mast cells resting was altered in high-risk group of breast cancer patients compared to low-risk group. L1CAM, EVL, FABP7, and CST1 were related to these infiltrating immune cells. L1CAM, EVL, FABP7, and CST1 were potential diagnostic biomarkers and therapeutic targets for BRCA.


Assuntos
Neoplasias da Mama , Molécula L1 de Adesão de Célula Nervosa , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Prognóstico , Linfócitos T CD8-Positivos , Biologia Computacional
8.
Eur Heart J ; 45(4): 287-305, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37992083

RESUMO

BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.


Assuntos
Doenças da Aorta , Dissecção Aórtica , Benzofenonas , Isoxazóis , Doenças Vasculares , Humanos , Fator de Transcrição AP-1 , Aminopropionitrilo , Estudos Transversais , Dissecção Aórtica/genética , Doenças da Aorta/patologia , Doenças Vasculares/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Necrose Tumoral
9.
J Gene Med ; 26(1): e3645, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041540

RESUMO

BACKGROUND: Patients with triple-negative breast cancer (TNBC) often have a poor prognostic outcome. Current treatment strategies cannot benefit all TNBC patients. Previous findings suggested pyroptosis as a novel target for suppressing cancer development, although the relationship between TNBC and pyroptosis-related genes (PRGs) was still unclear. METHODS: Gene expression data and clinical follow-up of TNBC patients were collected from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) and Gene Expression Omnibus (GEO). PRGs were screened using weighted gene co-expression network analysis. Cox regression analysis and the least absolute shrinkage and selection operator (i.e. LASSO) technique were applied to construct a pyroptosis-related prognostic risk score (PPRS) model, which was further combined with the clinicopathological characteristics of TNBC patients to develop a survival decision tree and a nomogram. The model was used to calculate the PPRS, and then the overall survival, immune infiltration, immunotherapy response and drug sensitivity of TNBC patients were analyzed based on the PPRS. RESULTS: The PPRS model was closely related to clinicopathological features and can independently and accurately predict the prognosis of TNBC. According to normalized PPRS, patients in different cohorts were divided into two groups. Compared with the high-PPRS group, the low-PPRS group had significantly higher ESTIMATE (i.e. Estimation of STromal and Immune cells in MAlignantTumours using Expression data) score, immune score and stromal score, and it also had overexpressed immune checkpoints and significantly reduced Tumor Immune Dysfunction and Exclusion (TIDE) score, as well as higher sensitivity to paclitaxel, veliparib, olaparib and talazoparib. A decision tree and nomogram based on PPRS and clinical characteristics can improve the prognosis stratification and survival prediction for TNBC patients. CONCLUSIONS: A PPRS model was developed to predict TNBC patients' immune characteristics and response to immunotherapy, chemotherapy and targeted therapy, as well as their survival outcomes.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Piroptose/genética , Imunoterapia , Fatores de Risco , Perfilação da Expressão Gênica
10.
Int J Surg ; 109(12): 4263-4272, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37720926

RESUMO

IMPORTANCE: Coronary artery bypass grafting (CABG) remains the gold standard for the treatment of multivessel and left main coronary heart disease. However, the current evidence about the optimal surgical revascularization strategy is inconsistent and is not sufficient to allow for definite conclusions. Thus, this topic needs to be extensively discussed. OBJECTIVE: The aim of this present study was to compare the clinical outcomes of off-pump CABG (OPCAB), conventional on-pump CABG (C-CABG), and on-pump beating heart (ONBEAT) CABG via an updated systematic review and network meta-analysis of randomized controlled trials. DATA SOURCES: PubMed, Web of Science, and the Cochrane Central Registry were searched for relevant randomized controlled trials that were published in English before 1 December 2021. STUDY SELECTION: Published trials that included patients who received OPCAB, C-CABG, and ONBEAT CABG were selected. DATA EXTRACTION AND SYNTHESIS: Two authors independently screened the search results, assessed the full texts to identify eligible studies and the risk of bias of the included studies, and extracted data. All processes followed the Preferred Reporting Items for Systematic Review and Meta-analysis of Individual Participant Data. MAIN OUTCOMES AND MEASURES: The primary outcome was postoperative mortality in patients who underwent C-CABG, OPCAB, or ONBEAT CABG. The secondary outcomes were postoperative myocardial infarction, stroke, and renal impairment in the three groups. The time point for analysis of outcomes was all time periods during the postoperative follow-up. RESULTS: A total of 39 385 patients (83 496.2 person-years) in 65 studies who fulfilled the prespecified criteria were included. In the network meta-analysis, OPCAB was associated with an increase of 12% in the risk of all-cause mortality when compared with C-CABG [odds ratio (OR): 1.12; 95% CI: 1.04-1.21], a reduction of 49% in the risk of myocardial infarction when compared with ONBEAT (OR: 0.51; 95% CI: 0.26-0.99), a reduction of 16% in the risk of stroke when compared with C-CABG (OR: 0.84; 95% CI: 0.72-0.99) and a similar risk of renal impairment when compared with C-CABG and ONBEAT. CONCLUSIONS AND RELEVANCE: OPCAB was associated with higher all-cause mortality but lower postoperative stroke compared with C-CABG. OPCAB was associated with a lower postoperative myocardial infarction than that of ONBEAT. Early mortality was comparable among OPCAB, ONBEAT, and C-CABG.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Acidente Vascular Cerebral , Humanos , Metanálise em Rede , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Ponte de Artéria Coronária/métodos , Doença da Artéria Coronariana/cirurgia , Infarto do Miocárdio/etiologia , Acidente Vascular Cerebral/etiologia
11.
Cell Death Dis ; 14(8): 508, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37550282

RESUMO

Cervical cancer is one of the leading causes of cancer death in women. Mitochondrial-mediated ferroptosis (MMF) is a recently discovered form of cancer cell death. However, the role and the underlying mechanism of MMF in cervical cancer remain elusive. Here, using an unbiased screening for mitochondrial transmembrane candidates, we identified mitochondrial carrier 1 (MTCH1) as a central mediator of MMF in cervical cancers. MTCH1-deficiency disrupted mitochondrial oxidative phosphorylation while elevated mitochondrial reactive oxygen species (ROS) by decreasing NAD+ levels. This mitochondrial autonomous event initiated a mitochondria-to-nucleus retrograde signaling involving reduced FoxO1 nuclear translocation and subsequently downregulation of the transcription and activity of a key anti-ferroptosis enzyme glutathione peroxidase 4 (GPX4), thereby elevating ROS and ultimately triggering ferroptosis. Strikingly, targeting MTCH1 in combination with Sorafenib effectively and synergistically inhibited the growth of cervical cancer in a nude mouse xenograft model by actively inducing ferroptosis. In conclusion, these findings enriched our understanding of the mechanisms of MMF in which MTCH1 governed ferroptosis though retrograde signaling to FoxO1-GPX4 axis, and provided a potential therapeutic target for treating cervical cancer.


Assuntos
Ferroptose , Neoplasias do Colo do Útero , Feminino , Camundongos , Animais , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Morte Celular/fisiologia , Proteínas de Membrana/farmacologia , Proteínas Mitocondriais
12.
Front Nutr ; 10: 1154996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266130

RESUMO

Background: To assess the association between 12 food groups intake and the risk of urologic cancers. Methods: We scanned PubMed and Web of Science databases up to April 1st, 2023, and 73 publications met the inclusion criteria in the meta-analysis. We used a random effects model to estimate the summary risk ratios (RRs) and 95% confidence intervals (95% CI). Results: In the linear dose-response meta-analysis, an inverse association was found between each additional daily 100 g of fruits [RR: 0.89, 95%CI = (0.83, 0.97)], 100 g of vegetables [RR: 0.92, 95%CI = (0.85, 0.99)], 12 g of alcohol [RR: 0.91, 95%CI = (0.88, 0.94)] and 1 cup of coffee [RR: 0.95, 95%CI = (0.83, 0.97)] intake and the risk of renal cell carcinoma. Conversely, each additional daily 100 g of red meat intake was positively associated with renal cell carcinoma [RR: 1.41, 95%CI = (1.03, 2.10)]. Inverse associations were observed between each additional daily 50 g of egg [RR: 0.73, 95%CI = (0.62, 0.87)] and each additional daily 1 cup of tea consumption and bladder cancer risk [RR: 0.97, 95%CI = (0.94, 0.99)]. There were no significant associations for nonlinear dose-response relationships between 12 food groups and urological cancers. Conclusion: Our meta-analysis strengthens the evidence that appropriate intake of specific food groups, such as fruits, vegetables, alcohol, tea, and coffee, is associated with the risk of renal cell carcinoma or bladder cancer. More studies are required to fill the knowledge gap on the links between various food groups and urologic cancers because the evidence was less credible in this meta-analysis. Systematic Review Registration: This study was registered on PROSPERO (CRD42022340336).

13.
Front Oncol ; 13: 1123420, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035162

RESUMO

Copper is an essential micronutrient for human body and plays a vital role in various biological processes including cellular respiration and free radical detoxification. Generally, copper metabolism in the body is in a stable state, and there are specific mechanisms to regulate copper metabolism and maintain copper homeostasis. Dysregulation of copper metabolism may have a great connection with various types of diseases, such as Wilson disease causing copper overload and Menkes disease causing copper deficiency. Cancer presents high mortality rates in the world due to the unlimited proliferation potential, apoptosis escape and immune escape properties to induce organ failure. Copper is thought to have a great connection with cancer, such as elevated levels in cancer tissue and serum. Copper also affects tumor progression by affecting angiogenesis, metastasis and other processes. Notably, cuproptosis is a novel form of cell death that may provide novel targeting strategies for developing cancer therapy. Copper chelators and copper ionophores are two copper coordinating compounds for the treatment of cancer. This review will explore the relationship between copper metabolism and cancers, and clarify copper metabolism and cuproptosis for cancer targeted therapy.

14.
Cell Commun Signal ; 21(1): 4, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604720

RESUMO

Autophagy is a multi-step catabolic process that delivers cellular components to lysosomes for degradation and recycling. The dysregulation of this precisely controlled process disrupts cellular homeostasis and leads to many pathophysiological conditions. The mechanistic target of rapamycin (mTOR) is a central nutrient sensor that integrates growth signals with anabolism to fulfil biosynthetic and bioenergetic requirements. mTOR nucleates two distinct evolutionarily conserved complexes (mTORC1 and mTORC2). However, only mTORC1 is acutely inhibited by rapamycin. Consequently, mTORC1 is a well characterized regulator of autophagy. While less is known about mTORC2, the availability of acute small molecule inhibitors and multiple genetic models has led to increased understanding about the role of mTORC2 in autophagy. Emerging evidence suggests that the regulation of mTORC2 in autophagy is mainly through its downstream effector proteins, and is variable under different conditions and cellular contexts. Here, we review recent advances that describe a role for mTORC2 in this catabolic process, and propose that mTORC2 could be a potential clinical target for the treatment of autophagy-related diseases. Video abstract.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Autofagia
15.
Front Oncol ; 12: 1049345, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530986

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors with a poor prognosis. Type X collagen α 1 chain (COL10A1), a member of the collagen family, is a gene associated with the progression of a variety of human tumors, but the specific function and molecular mechanism of COL10A1 in pancreatic cancer remain unclear. Our study found that COL10A1 is highly expressed in pancreatic cancer cells and tissues, and its high expression is related to poor prognosis and some clinicopathological features, such as tumor size and differentiation. Biological functional experiments showed that overexpression of COL10A1 enhanced the proliferation and migration of PDAC cells. Interestingly, discoid protein domain receptor 2 (DDR2), the receptor of COL10A1, is regulated by COL10A1. We found that the COL10A1-DDR2 axis activates the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, which leads to epithelial-mesenchymal transformation (EMT) and accelerates the progression of pancreatic cancer. In summary, COL10A1 regulates PDAC cell proliferation and MEK/ERK signaling pathways by binding to DDR2 to promote migration, invasion and EMT. Our study suggested that COL10A1 might be a critical factor in promoting PDAC progression. More research is needed to confirm COL10A1 as a potential biomarker and therapeutic target for PDAC.

16.
Science ; 378(6619): eabm8797, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378956

RESUMO

Genetically encoded fluorescent voltage indicators are ideally suited to reveal the millisecond-scale interactions among and between targeted cell populations. However, current indicators lack the requisite sensitivity for in vivo multipopulation imaging. We describe next-generation green and red voltage sensors, Ace-mNeon2 and VARNAM2, and their reverse response-polarity variants pAce and pAceR. Our indicators enable 0.4- to 1-kilohertz voltage recordings from >50 spiking neurons per field of view in awake mice and ~30-minute continuous imaging in flies. Using dual-polarity multiplexed imaging, we uncovered brain state-dependent antagonism between neocortical somatostatin-expressing (SST+) and vasoactive intestinal peptide-expressing (VIP+) interneurons and contributions to hippocampal field potentials from cell ensembles with distinct axonal projections. By combining three mutually compatible indicators, we performed simultaneous triple-population imaging. These approaches will empower investigations of the dynamic interplay between neuronal subclasses at single-spike resolution.


Assuntos
Potenciais de Ação , Hipocampo , Imagem Molecular , Neurônios , Córtex Visual , Animais , Camundongos , Potenciais de Ação/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Interneurônios/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Imagem Molecular/métodos , Rodopsina/química , Rodopsina/genética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Córtex Visual/citologia , Córtex Visual/fisiologia , Fluorescência , Medições Luminescentes
17.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142635

RESUMO

Doxorubicin (DOXO) is a potent chemotherapeutic drug widely used to treat various cancers. However, its clinical application is limited due to serious adverse effects on dose-dependent cardiotoxicity. Although the underlying mechanism has not been fully clarified, DOXO-induced cardiotoxicity has been mainly attributed to the accumulation of reactive oxygen species (ROS) in cardiomyocytes. Fucoidan, as a kind of sulphated polysaccharide existing in numerous brown seaweed, has potent anti-oxidant, immune-regulatory, anti-tumor, anti-coagulate and anti-viral activities. Here, we explore the potential protective role and mechanism of fucoidan in DOXO-induced cardiotoxicity in mice. Our results show that oral fucoidan supplement exerts potent protective effects against DOXO-induced cardiotoxicity by reducing oxidative stress and preventing mitochondrial function injury. The improved effect of fucoidan on DOXO-induced cardiotoxicity was evaluated by echocardiography, cardiac myocytes size and cardiac fibrosis analysis, and the expression of genes related to cardiac dysfunction and remodeling. Fucoidan reduced the ROS content and the MDA levels but enhanced the activity of antioxidant enzymes GSH-PX and SOD in the mouse serum in a DOXO-induced cardiotoxicity model. In addition, fucoidan also increased the ATP production capacity and restored the levels of a mitochondrial respiratory chain complex in heart tissue. Collectively, this study highlights fucoidan as a potential polysaccharide for protecting against DOXO-induced cardiovascular diseases.


Assuntos
Antioxidantes , Cardiotoxicidade , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Camundongos , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Polissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
18.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743109

RESUMO

Mitochondria, as the main site of cellular energy metabolism and the generation of oxygen free radicals, are the key switch for mitochondria-mediated endogenous apoptosis. Ca2+ is not only an important messenger for cell proliferation, but it is also an indispensable signal for cell death. Ca2+ participates in and plays a crucial role in the energy metabolism, physiology, and pathology of mitochondria. Mitochondria control the uptake and release of Ca2+ through channels/transporters, such as the mitochondrial calcium uniporter (MCU), and influence the concentration of Ca2+ in both mitochondria and cytoplasm, thereby regulating cellular Ca2+ homeostasis. Mitochondrial Ca2+ transport-related processes are involved in important biological processes of tumor cells including proliferation, metabolism, and apoptosis. In particular, MCU and its regulatory proteins represent a new era in the study of MCU-mediated mitochondrial Ca2+ homeostasis in tumors. Through an in-depth analysis of the close correlation between mitochondrial Ca2+ and energy metabolism, autophagy, and apoptosis of tumor cells, we can provide a valuable reference for further understanding of how mitochondrial Ca2+ regulation helps diagnosis and therapy.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cálcio da Dieta , Citoplasma/metabolismo , Mitocôndrias/metabolismo
19.
Plant Cell Rep ; 41(8): 1631-1650, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35575808

RESUMO

Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.


Assuntos
Melatonina , Solanum lycopersicum , Secas , Crescimento e Desenvolvimento , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Plantas , Estresse Fisiológico
20.
Nutrients ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35276902

RESUMO

Ferrous sulfate is a commonly used iron supplement for the correction of iron-deficiency anemia but with frequent gastrointestinal side effects. Milk-derived iron-binding glycoprotein lactoferrin possesses well gastrointestinal tolerance and fewer side effects caused by the intake of high-dose iron. However, the underlying mechanism of the iron-enhancing effect of lactoferrin remains unclear. In addition, the comparative efficacies between lactoferrin and ferrous sulfate are also remained to be determined. We conducted a systematic review and meta-analysis on published intervention studies to investigate how lactoferrin modulate iron metabolism and evaluate the comparative effects between lactoferrin and ferrous sulfate supplementation on iron absorption, iron storage, erythropoiesis and inflammation. Lactoferrin supplementation had better effects on serum iron (WMD: 41.44 ug/dL; p < 0.00001), ferritin (WMD: 13.60 ng/mL; p = 0.003) and hemoglobin concentration (11.80 g/dL; p < 0.00001), but a reducing effect on fractional iron absorption (WMD: −2.08%; p = 0.02) and IL-6 levels (WMD: −45.59 pg/mL; p < 0.00001) compared with ferrous sulfate. In conclusion, this study supports lactoferrin as a superior supplement to ferrous sulfate regarding the improvement in serum iron parameters and hemoglobin levels. Considering the weak influence of lactoferrin on iron absorption, the anti-inflammation effect of lactoferrin may be the potential mechanism to explain its efficacy on iron status and erythropoiesis.


Assuntos
Anemia Ferropriva , Anemia Ferropriva/tratamento farmacológico , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Compostos Ferrosos , Humanos , Lactoferrina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA