Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Small ; : e2401397, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898735

RESUMO

Pyroptosis, an inflammatory cell death, plays a pivotal role in activating inflammatory response, reversing immunosuppression and enhancing anti-tumor immunity. However, challenges remain regarding how to induce pyroptosis efficiently and precisely in tumor cells to amplify anti-tumor immunotherapy. Herein, a pH-responsive polydopamine (PDA) nanocluster, perfluorocarbon (PFC)@octo-arginine (R8)-1-Hexadecylamine (He)-porphyrin (Por)@PDA-gambogic acid (GA)-cRGD (R-P@PDA-GC), is rationally design to augment phototherapy-induced pyroptosis and boost anti-tumor immunity through a two-input programmed cascade therapy. Briefly, oxygen doner PFC is encapsulated within R8 linked photosensitizer Por and He micelles as the core, followed by incorporation of GA and cRGD peptides modified PDA shell, yielding the ultimate R-P@PDA-GC nanoplatforms (NPs). The pH-responsive NPs effectively alleviate hypoxia by delivering oxygen via PFC and mitigate heat resistance in tumor cells through GA. Upon two-input programmed irradiation, R-P@PDA-GC NPs significantly enhance reactive oxygen species production within tumor cells, triggering pyroptosis via the Caspase-1/GSDMD pathway and releasing numerous inflammatory factors into the TME. This leads to the maturation of dendritic cells, robust infiltration of cytotoxic CD8+ T and NK cells, and diminution of immune suppressor Treg cells, thereby amplifying anti-tumor immunity.

2.
ACS Nano ; 18(20): 13226-13240, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38712706

RESUMO

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.


Assuntos
Epigênese Genética , Imunoterapia , Linfócitos T Citotóxicos , Microambiente Tumoral , Animais , Epigênese Genética/efeitos dos fármacos , Camundongos , Linfócitos T Citotóxicos/imunologia , Humanos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Nanopartículas/química , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia
3.
Acta Pharm Sin B ; 14(5): 2194-2209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799622

RESUMO

Despite the great potential of anti-PD-L1 antibodies for immunotherapy, their low response rate due to an immunosuppressive tumor microenvironment has hampered their application. To address this issue, we constructed a cell membrane-coated nanosystem (mB4S) to reverse an immunosuppressive microenvironment to an immuno-supportive one for strengthening the anti-tumor effect. In this system, Epirubicin (EPI) as an immunogenic cell death (ICD) inducer was coupled to a branched glycopolymer via hydrazone bonds and diABZI as a stimulator of interferon genes (STING) agonist was encapsulated into mB4S. After internalization of mB4S, EPI was acidic-responsively released to induce ICD, which was characterized by an increased level of calreticulin (CRT) exposure and enhanced ATP secretion. Meanwhile, diABZI effectively activated the STING pathway. Treatment with mB4S in combination with an anti-PD-L1 antibody elicited potent immune responses by increasing the ratio of matured dendritic cells (DCs) and CD8+ T cells, promoting cytokines secretion, up-regulating M1-like tumor-associated macrophages (TAMs) and down-regulating immunosuppressive myeloid-derived suppressor cells (MDSCs). Therefore, this nanosystem for co-delivery of an ICD inducer and a STING agonist achieved promotion of DCs maturation and CD8+ T cells infiltration, creating an immuno-supportive microenvironment, thus potentiating the therapy effect of the anti-PD-L1 antibody in both 4T1 breast and CT26 colon tumor mice.

4.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
5.
Adv Mater ; 36(25): e2401304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469918

RESUMO

The dense extracellular matrix (ECM) in solid tumors, contributed by cancer-associated fibroblasts (CAFs), hinders penetration of drugs and diminishes their therapeutic outcomes. A sequential treatment strategy of remodeling the ECM via a CAF modifier (dasatinib, DAS) is proposed to promote penetration of an immunogenic cell death (ICD) inducer (epirubicin, Epi) via apoptotic vesicles, ultimately enhancing the treatment efficacy against breast cancer. Dendritic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA)-based nanomedicines (poly[OEGMA-Dendron(G2)-Gly-Phe-Leu-Gly-DAS] (P-DAS) and poly[OEGMA-Dendron(G2)-hydrazone-Epi] (P-Epi)) are developed for sequential delivery of DAS and Epi, respectively. P-DAS reprograms CAFs to reduce collagen by downregulating collagen anabolism and energy metabolism, thereby reducing the ECM deposition. The regulated ECM can enhance tumor penetration of P-Epi to strengthen its ICD effect, leading to an amplified antitumor immune response. In breast cancer-bearing mice, this approach alleviates the ECM barrier, resulting in reduced tumor burden and increased cytotoxic T lymphocyte infiltration, and more encouragingly, synergizes effectively with anti-programmed cell death 1 (PD-1) therapy, significantly inhibiting tumor growth and preventing lung metastasis. Furthermore, systemic toxicity is barely detectable after sequential treatment with P-DAS and P-Epi. This approach opens a new avenue for treating desmoplastic tumors by metabolically targeting CAFs to overcome the ECM barrier.


Assuntos
Antineoplásicos , Nanomedicina , Animais , Nanomedicina/métodos , Camundongos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dendrímeros/química , Feminino , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Portadores de Fármacos/química
6.
Adv Mater ; 36(25): e2400582, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477381

RESUMO

The effects of dendron side chains in polymeric conjugates on tumor penetration and antigen presentation are systematically examined. Three polymer-gemcitabine (Gem) conjugates (pG0-Gem, pG1-Gem, pG2-Gem) are designed and prepared. The pG2-Gem conjugate uniquely binds to the mitochondria of tumor cells, thus regulating mitochondrial dynamics. The interaction between the pG2-Gem conjugate and the mitochondria promotes great penetration and accumulation of the conjugate at the tumor site, resulting in pronounced antitumor effects in an animal model. Such encouraging therapeutic effects can be ascribed to immune modulation since MHC-1 antigen presentation is significantly enhanced due to mitochondrial fusion and mitochondrial metabolism alteration after pG2-Gem treatment. Crucially, the drug-free dendronized polymer, pG2, is identified to regulate mitochondrial dynamics, and the regulation is independent of the conjugated Gem. Furthermore, the combination of pG2-Gem with anti-PD-1 antibody results in a remarkable tumor clearance rate of 87.5% and a prolonged survival rate of over 150 days, demonstrating the potential of dendronized polymers as an innovative nanoplatform for metabolic modulation and synergistic tumor immunotherapy.


Assuntos
Desoxicitidina , Gencitabina , Dinâmica Mitocondrial , Nanomedicina , Polímeros , Animais , Nanomedicina/métodos , Humanos , Polímeros/química , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacologia , Camundongos , Dinâmica Mitocondrial/efeitos dos fármacos , Dendrímeros/química , Linhagem Celular Tumoral , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos
7.
Adv Mater ; 36(26): e2403588, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38490170

RESUMO

A low-generation lysine dendrimer, SPr-G2, responds to intracellular glutathione to initiate bioorthogonal in situ polymerization, resulting in the formation of large assemblies in mouse breast cancer cells. The intracellular large assemblies of SPr-G2 can interact with lysosomes to induce lysosome expansion and enhance lysosomal membrane permeabilization, leading to major histocompatibility complex class I upregulation on tumor cell surfaces and ultimately tumor cell death. Moreover, the use of the SPr-G2 dendrimer to conjugate the chemotherapeutic drug, camptothecin (CPT), can boost the therapeutic potency of CPT. Excellent antitumor effects in vitro and in vivo are obtained from the combinational treatment of the SPr-G2 dendrimer and CPT. This combinational effect also enhances antitumor immunity through promoting activation of cytotoxic T cells in tumor tissues and maturation of dendritic cells. This study can shed new light on the development of peptide dendritic agents for cancer therapy.


Assuntos
Apresentação de Antígeno , Dendrímeros , Lisossomos , Polimerização , Lisossomos/metabolismo , Lisossomos/química , Animais , Dendrímeros/química , Camundongos , Linhagem Celular Tumoral , Apresentação de Antígeno/efeitos dos fármacos , Camptotecina/farmacologia , Camptotecina/química , Humanos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química
8.
Adv Mater ; 36(18): e2311500, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38299748

RESUMO

The application of nanomedicines for glioblastoma (GBM) therapy is hampered by the blood-brain barrier (BBB) and the dense glioblastoma tissue. To achieve efficient BBB crossing and deep GBM penetration, this work demonstrates a strategy of active transcellular transport of a mitochondrion-disturbing nanomedicine, pGBEMA22-b-pSSPPT9 (GBEPPT), in the GBM tissue through mitocytosis. GBEPPT is computer-aided designed and prepared by self-assembling a conjugate of an amphiphilic block polymer and a drug podophyllotoxin (PPT). When GBEPPT is delivered to the tumor site, overexpressed γ-glutamyl transpeptidase (GGT) on the brain-blood endothelial cell, or the GBM cell triggered enzymatic hydrolysis of γ-glutamylamide on GBEPPT to reverse its negative charge to positive. Positively charged GBEPPT rapidly enter into the cell and target the mitochondria. These GBEPPT disturb the homeostasis of mitochondria, inducing mitocytosis-mediated extracellular transport of GBEPPT to the neighboring cells via mitosomes. This intracellular-to-intercellular delivery cycle allows GBEPPT to penetrate deeply into the GBM parenchyma, and exert sustainable action of PPT released from GBEPPT on the tumor cells along its penetration path at the tumor site, thus improving the anti-GBM effect. The process of mitocytosis mediated by the mitochondrion-disturbing nanomedicine may offer great potential in enhancing drug penetration through malignant tissues, especially poorly permeable solid tumors.


Assuntos
Glioblastoma , Mitocôndrias , Polímeros , Mitocôndrias/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Linhagem Celular Tumoral , Polímeros/química , Animais , Barreira Hematoencefálica/metabolismo , Podofilotoxina/química , Podofilotoxina/farmacologia , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , gama-Glutamiltransferase/metabolismo , Portadores de Fármacos/química
9.
Anal Chem ; 96(6): 2550-2558, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38314707

RESUMO

Cancer-related extracellular vesicles (EVs) are considered important biomarkers for cancer diagnosis because they can convey a large amount of information about tumor cells. In order to detect cancer-related EVs efficiently, an electrochemiluminescence (ECL) sensor for the specific identification and highly sensitive detection of EVs in the plasma of cancer patients was constructed based on dual recognitions by glycosyl-imprinted polymer (GIP) and aptamer. The characteristic glycosyl Neu5Ac-α-(2,6)-Gal-ß-(1-4)-GlcNAc trisaccharide on the surface of EVs was used as a template molecule and 3-aminophenylboronic acid as a functional monomer to form a glycosyl-imprinted polymer by electropolymerization. After glycosyl elution, the imprinted film specifically recognized and adsorbed the EVs in the sample, and then the CD63 aptamer-bipyridine ruthenium (Aptamer-Ru(bpy)) was added to combine with the CD63 glycoprotein on the extracellular vesicle's surface, thus providing secondary recognition of the EVs. Finally, the EVs were quantitatively detected according to the ECL signal produced by the labeled bipyridine ruthenium. When more EVs were captured by the imprinted film, more probes were obtained after incubation, and the ECL signal was stronger. Under the optimized conditions, the ECL signal showed a good linear relationship with the concentration of EVs in the range of 9.5 × 102 to 9.5 × 107 particles/mL, and the limit of detection was 641 particles/mL. The GIP sensor can discriminate between the EV contents of cancer patients and healthy controls with high accuracy. Because of its affordability, high sensitivity, and ease of use, it is anticipated to be employed for cancer early detection and diagnosis.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Neoplasias , Rutênio , Humanos , Medições Luminescentes , Oligonucleotídeos , Polímeros , Técnicas Eletroquímicas , Neoplasias/diagnóstico
10.
Adv Mater ; 36(15): e2312528, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240412

RESUMO

Genetic manipulations and pharmaceutical interventions to disturb lipid metabolism homeostasis have emerged as an attractive approach for the management of cancer. However, the research on the utilization of bioactive materials to modulate lipid metabolism homeostasis remains constrained. In this study, heptakis (2,3,6-tri-O-methyl)-ß-cyclodextrin (TMCD) is utilized to fabricate homomultivalent polymeric nanotraps, and surprisingly, its unprecedented ability to perturb lipid metabolism homeostasis and induce pyroptosis in tumor cells is found. Through modulation of the density of TMCD arrayed on the polymers, one top-performing nanotrap, PTMCD4, exhibits the most powerful cholesterol-trapping and depletion capacity, thus achieving prominent cytotoxicity toward different types of tumor cells and encouraging antitumor effects in vivo. The interactions between PTMCD4 and biomembranes of tumor cells effectively enable the reduction of cellular phosphatidylcholine and cholesterol levels, thus provoking damage to the biomembrane integrity and perturbation of lipid metabolism homeostasis. Additionally, the interplays between PTMCD4 and lysosomes also induce lysosomal stress, activate the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasomes, and subsequently trigger tumor cell pyroptosis. To sum up, this study first introduces dendronized bioactive polymers to manipulate lipid metabolism and has shed light on another innovative insight for cancer therapy.


Assuntos
Amidas , Ciclopropanos , Neoplasias , Piroptose , Humanos , Metabolismo dos Lipídeos , Homeostase , Colesterol , Neoplasias/tratamento farmacológico , Polímeros/metabolismo
11.
Nanoscale ; 16(6): 2860-2867, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38231414

RESUMO

Identifying the underlying catalytic mechanisms of synthetic nanocatalysts or nanozymes is important in directing their design and applications. Herein, we revisited the oxidation process of 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB) by Mn3O4 nanoparticles and revealed that it adopted an organic acid/aldehyde-triggered catalytic mechanism at a weakly acidic or neutral pH, which is O2-independent and inhibited by the pre-addition of H2O2. Importantly, similar organic acid/aldehyde-mediated oxidation was applied to other substrates of peroxidase in the presence of nanoparticulate or commercially available MnO2 and Mn2O3 but not MnO. The selective oxidation of TMB by Mn3O4 over MnO was further supported by density functional theory calculations. Moreover, Mn3O4 nanoparticles enabled the oxidation of indole 3-acetic acid, a substrate that can generate cytotoxic singlet oxygen upon single-electron transfer oxidation, displaying potential in nanocatalytic tumor therapy. Overall, we revealed a general catalytic mechanism of manganese oxides towards the oxidation of peroxidase substrates, which could boost the design and various applications of these manganese-based nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Humanos , Óxidos , Compostos de Manganês/farmacologia , Oxirredutases , Manganês , Aldeídos , Elétrons , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Peroxidases
12.
Adv Mater ; 36(3): e2308977, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37968865

RESUMO

Lung cancer is the second most prevalent cancer and the leading cause of cancer-related death worldwide. Surgery, chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy are currently available as treatment methods. However, drug resistance is a significant factor in the failure of lung cancer treatments. Novel therapeutics have been exploited to address complicated resistance mechanisms of lung cancer and the advancement of nanomedicine is extremely promising in terms of overcoming drug resistance. Nanomedicine equipped with multifunctional and tunable physiochemical properties in alignment with tumor genetic profiles can achieve precise, safe, and effective treatment while minimizing or eradicating drug resistance in cancer. Here, this work reviews the discovered resistance mechanisms for lung cancer chemotherapy, molecular targeted therapy, immunotherapy, and radiotherapy, and outlines novel strategies for the development of nanomedicine against drug resistance. This work focuses on engineering design, customized delivery, current challenges, and clinical translation of nanomedicine in the application of resistant lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Neoplasias , Humanos , Nanomedicina , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos
13.
Adv Sci (Weinh) ; 11(2): e2306230, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953442

RESUMO

Combined chemotherapy and targeted therapy holds immense potential in the management of advanced gastric cancer (GC). GC tissues exhibit an elevated expression level of protein kinase B (AKT), which contributes to disease progression and poor chemotherapeutic responsiveness. Inhibition of AKT expression through an AKT inhibitor, capivasertib (CAP), to enhance cytotoxicity of paclitaxel (PTX) toward GC cells is demonstrated in this study. A cathepsin B-responsive polymeric nanoparticle prodrug system is employed for co-delivery of PTX and CAP, resulting in a polymeric nano-drug BPGP@CAP. The release of PTX and CAP is triggered in an environment with overexpressed cathepsin B upon lysosomal uptake of BPGP@CAP. A synergistic therapeutic effect of PTX and CAP on killing GC cells is confirmed by in vitro and in vivo experiments. Mechanistic investigations suggested that CAP may inhibit AKT expression, leading to suppression of the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway. Encouragingly, CAP can synergize with PTX to exert potent antitumor effects against GC after they are co-delivered via a polymeric drug delivery system, and this delivery system helped reduce their toxic side effects, which provides an effective therapeutic strategy for treating GC.


Assuntos
Paclitaxel , Neoplasias Gástricas , Humanos , Inibidores da Angiogênese , Catepsina B , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases , Polímeros , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas/tratamento farmacológico
14.
Adv Mater ; 36(2): e2307263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37743633

RESUMO

Unsatisfied tumor accumulation of chemotherapeutic drugs and a complicated immunosuppressive microenvironment diminish the immune response rate and the therapeutic effect. Surface modification of these drugs with target ligands can promote their cellular internalization, but the modified drugs may be subjected to unexpected immune recognition and clearance. Herein, a phenylboronic acid (PBA) group-shieldable dendritic nanomedicine that integrates an immunogenic cell death (ICD)-inducing agent (epirubicin, Epi) and an indoleamine 2,3-dioxgenase 1 (IDO1) inhibitor (NLG919) is reported for tumor chemo-immunotherapy. This NLG919-loaded Epi-conjugated PEGylated dendrimers bridged with boronate bonds (NLG919@Epi-DBP) maintains a stable nanostructure during circulation. Under a moderate acidic condition, the PBA group exposes to the sialic acid residue on the tumor cell membrane to enhance the internalization and penetration of NLG919@Epi-DBP. At pH 5.0, NLG919@Epi-DBP rapidly disassembles to release the incorporated Epi and NLG919. Epi triggers robust ICD of tumor cells that evokes strong immune response. In addition, inhibition of the IDO1 activity downregulates the metabolism of L-tryptophan to kynurenine, leading to a reduction in the recruitment of immunosuppressive cells and modulation of the tumor immune microenvironment. Collectively, this promising strategy has been demonstrated to evoke robust immune response as well as remodel the immunosuppressive microenvironment for an enhanced chemo-immunotherapeutic effect.


Assuntos
Nanomedicina , Neoplasias , Humanos , Epirubicina/química , Neoplasias/terapia , Triptofano/química , Triptofano/metabolismo , Triptofano/farmacologia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral
15.
Adv Sci (Weinh) ; 11(11): e2307154, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38161213

RESUMO

Nanozyme catalytic therapy for cancer treatments has become one of the heated topics, and the therapeutic efficacy is highly correlated with their catalytic efficiency. In this work, three copper-doped CeO2 supports with various structures as well as crystal facets are developed to realize dual enzyme-mimic catalytic activities, that is superoxide dismutase (SOD) to reduce superoxide radicals to H2 O2 and peroxidase (POD) to transform H2 O2 to ∙OH. The wire-shaped CeO2 /Cu-W has the richest surface oxygen vacancies, and a low level of oxygen vacancy (Vo) formation energy, which allows for the elimination of intracellular reactive oxygen spieces (ROS) and continuous transformation to ∙OH with cascade reaction. Moreover, the wire-shaped CeO2 /Cu-W displays the highest toxic ∙OH production capacity in an acidic intracellular environment, inducing breast cancer cell death and pro-apoptotic autophagy. Therefore, wire-shaped CeO2 /Cu nanoparticles as an artificial enzyme system can have great potential in the intervention of intracellular ROS in cancer cells, achieving efficacious nanocatalytic therapy.


Assuntos
Cério , Cobre , Neoplasias , Humanos , Espécies Reativas de Oxigênio/metabolismo , Oxigênio
16.
Acta Biomater ; 175: 329-340, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135204

RESUMO

Rational design of polymeric conjugates could greatly potentiate the combination therapy of solid tumors. In this study, we designed and prepared two polymeric conjugates (HT-DTX and PEG-YC-1), whereas the drugs were attached to the PEG via a linker sensitive to cathepsin B, over-expressed in TNBC. Stable nanostructures were formed by these two polymer prodrug conjugates co-assembly (PPCC). The stimuli-responsiveness of PPCC was confirmed, and the size shrinkage under tumor microenvironment would facilitate the penetration of PPCC into tumor tissue. In vitro experiments revealed the molecular mechanism for the synergistic effect of the combination of DTX and YC-1. Moreover, the systemic side effects were significantly diminished since the biodistribution of PPCC was improved after i.v. administration in vivo. In this context, the co-assembled nano-structural approach could be employed for delivering therapeutic drugs with different mechanisms of action to exert a synergistic anti-tumor effect against solid tumors, including triple-negative breast cancer. STATEMENT OF SIGNIFICANCE.


Assuntos
Antineoplásicos , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Terapia Neoadjuvante , Distribuição Tecidual , Polímeros/química , Pró-Fármacos/química , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Carbohydr Polym ; 326: 121643, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142082

RESUMO

Ferroptosis induced by RAS-selective lethal small molecule 3 (RSL3) can trigger anti-tumor immune responses by reversing the immunosuppressive tumor microenvironment (TME). However, it is challenging to achieve sufficient ferroptosis in the tumor via RSL3 alone. Because of the excellent reactive oxygen species (ROS) production capacity of glucose oxidase (GOx) and Fe3+, we hypothesized that GOx and Fe3+ could increase intracellular lipid peroxidation (LPO) accumulation, and strengthen RSL3-induced ferroptosis in tumor cells. Herein we designed an in-situ gelation strategy based on sodium alginate (SA) to realize localized transport and specific retention of GOx, RSL3, and Fe3+ in tumor tissues. We loaded hydrophobic RSL3 with the tannic acid (TA)/Fe3+ complexes to form nanoparticles (RTF NPs). GOx diluted in the SA solution was blended with RTF NPs to obtain a homogeneous solution. The solution could form hydrogels in the tumor site (RTFG@SA) upon injection. The retained GOx and Fe3+ amplified the induction of ferroptosis by RSL3, augmented immunogenic cell death (ICD) and promoted antitumor immunity. The RTFG@SA hydrogel presented a significant restraint of tumor growth and metastasis in the 4T1 tumor model. This hydrogel could offer an effective means of co-delivery of hydrophilic drugs, hydrophobic drugs, and metal ions.


Assuntos
Ferroptose , Hidrogéis , Hidrogéis/farmacologia , Glucose Oxidase , Alginatos/farmacologia , Linhagem Celular Tumoral
18.
J Mater Chem B ; 12(2): 413-435, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38112639

RESUMO

Ferroptosis is a new form of non-apoptotic programmed cell death. Due to its effectiveness in cancer treatment, there are increasing studies on the application of nanoparticles based on ferroptosis in cancer therapy. In this paper, we present a summary of the latest progress in nanoparticles based on ferroptosis for effective tumor therapy. We also describe the combined treatment of ferroptosis with other therapies, including chemotherapy, radiotherapy, phototherapy, immunotherapy, and gene therapy. This summary of drug delivery systems based on ferroptosis aims to provide a basis and inspire opinions for researchers concentrating on exploring this field. Finally, we present some prospects and challenges for the application of nanotherapies to clinical treatment by promoting ferroptosis in cancer cells.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Terapia Combinada , Imunoterapia , Fototerapia , Neoplasias/tratamento farmacológico
19.
Biosens Bioelectron ; 247: 115939, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145594

RESUMO

Nitric Oxide (NO), a significant gasotransmitter in biological systems, plays a crucial role in neurological diseases and cancer. Currently, there is a lack of effective methods for rapidly and sensitively identifying NO and elucidating its relationship with neurological diseases. Novel diamino-cyclic-metalloiridium phosphorescence probes, Ir-CDA and Ir-BDA, have been designed to visualize the gasotransmitter NO in Alzheimer's disease (AD) and glioblastoma (GBM). Ir-CDA and Ir-BDA utilize iridium (III) as the central ion and incorporate a diamino group as a ligand. The interaction between the diamino structure and NO leads to the formation of a three-nitrogen five-membered ring structure, which opens up phosphorescence. The two probes can selectively bind to NO and offer low detection limits. Additionally, Ir-BDA/Ir-CDA can image NO in brain cancer cell models, neuroinflammatory models, and AD cell models. Furthermore, the NO content in fresh brain sections from AD mice was considerably higher than that in wild-type (WT) mice. Consequently, it is plausible that NO is generated in significant quantities around cells hosting larger Aß deposits, gradually diffusing throughout the entire brain region. Furthermore, we posit that this phenomenon is a key factor contributing to the higher brain NO content in AD mice compared to that in WT mice. This discovery offers novel insights into the diagnosis and treatment of AD.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Gasotransmissores , Glioblastoma , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Óxido Nítrico , Glioblastoma/diagnóstico por imagem , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
20.
Theranostics ; 13(15): 5386-5417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908735

RESUMO

Stimuli-activatable strategies prevail in the design of nanomedicine for cancer theranostics. Upon exposure to endogenous/exogenous stimuli, the stimuli-activatable nanomedicine could be self-assembled, disassembled, or functionally activated to improve its biosafety and diagnostic/therapeutic potency. A myriad of tumor-specific features, including a low pH, a high redox level, and overexpressed enzymes, along with exogenous physical stimulation sources (light, ultrasound, magnet, and radiation) have been considered for the design of stimuli-activatable nano-medicinal products. Recently, novel stimuli sources have been explored and elegant designs emerged for stimuli-activatable nanomedicine. In addition, multi-functional theranostic nanomedicine has been employed for imaging-guided or image-assisted antitumor therapy. In this review, we rationalize the development of theranostic nanomedicine for clinical pressing needs. Stimuli-activatable self-assembly, disassembly or functional activation approaches for developing theranostic nanomedicine to realize a better diagnostic/therapeutic efficacy are elaborated and state-of-the-art advances in their structural designs are detailed. A reflection, clinical status, and future perspectives in the stimuli-activatable nanomedicine are provided.


Assuntos
Nanomedicina , Neoplasias , Humanos , Medicina de Precisão , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA