Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Eur J Pharmacol ; 978: 176805, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950838

RESUMO

Cucurbitacin B (CuB) is a compound found in plants like Cucurbitaceae that has shown promise in fighting cancer, particularly in lung cancer. However, the specific impact of CuB on ferroptosis and how it works in lung cancer cells has not been fully understood. Our research has discovered that CuB can effectively slow down the growth of non-small cell lung cancer (NSCLC) cells. Even in small amounts, it was able to inhibit the growth of various NSCLC cell lines. This inhibitory effect was reversed when ferroptosis inhibitors DFO, Lip-1 and Fer-1 were introduced. CuB was found to increase the levels of reactive oxygen species (ROS), lipid ROS, MDA, and ferrous ions within H358 lung cancer cells, leading to a decrease in GSH, mitochondrial membrane potential (MMP) and changes in ferroptosis-related proteins in a dose-dependent manner. These findings were also confirmed in A549 lung cancer cells. In A549 cells, different concentrations of CuB induced the accumulation of intracellular lipid ROS, ferrous ions and changes in ferroptosis-related indicators in a concentration-dependent manner. Meanwhile, the cytotoxic effect induced by CuB in A549 cells was counteracted by ferroptosis inhibitors DFO and Fer-1. Through network pharmacology, we identified potential targets related to ferroptosis in NSCLC cells treated with CuB, with STAT3 targets showing high scores. Further experiments using molecular docking and cell thermal shift assay (CETSA) revealed that CuB interacts with the STAT3 protein. Western blot and immunofluorescence staining demonstrated that CuB inhibits the phosphorylation of STAT3 (P-STAT3) in H358 cells. Silencing STAT3 enhanced CuB-induced accumulation of lipid ROS and iron ions, as well as the expression of ferroptosis-related proteins. On the other hand, overexpression of STAT3 reversed the effects of CuB-induced ferroptosis. The results indicate that CuB has the capability to suppress STAT3 activation, resulting in ferroptosis, and could be a promising treatment choice for NSCLC.

2.
World J Clin Oncol ; 15(6): 674-676, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946831

RESUMO

Thyroid carcinoma is a complex disease with several types, the most common being well-differentiated and undifferentiated. The latter, "undifferentiated carcinoma", also known as anaplastic thyroid carcinoma (ATC), is a highly aggressive malignant tumor accounting for less than 0.2% of all thyroid carcinomas and carries a poor prognosis with a median survival of 5 months. BRAF gene mutations are the most common molecular factor associated with this type of thyroid carcinoma. Recent advances in targeted biological agents, immunotherapy, stem cell therapy, nanotechnology, the dabrafenib/trametinib combination therapy, immune checkpoint inhibitors (ICI) and artificial intelligence offer novel treatment options. The combination therapy of dabrafenib and trametinib is the current standard treatment for patients with BRAF-V600E gene mutations. Besides, the dabrafenib/trametinib combination therapy, ICI, used alone or in combination with targeted therapies have raised some hopes for improving the prognosis of this deadly disease. Younger age, earlier tumor stage and radiotherapy are all prognostic factors for improved outcomes. Ultimately, therapeutic regimens should be tailored to the individual patient based on surveillance and epidemiological data, and a multidisciplinary approach is essential.

3.
World J Clin Oncol ; 15(6): 687-690, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38946838

RESUMO

Glioma is one of the most common primary intracranial tumors, characterized by invasive growth and poor prognosis. Actin cytoskeletal rearrangement is an essential event in tumor cell migration. Scinderin (SCIN), an actin severing and capping protein that regulates the actin cytoskeleton, is involved in the proliferation and migration of certain cancer cells. However, its biological role and molecular mechanism in glioma remain unclear. Lin et al explored the role and mechanism of SCIN in gliomas. The results showed that SCIN mechanically affected cytoskeleton remodeling and inhibited the formation of lamellipodia via RhoA/FAK signaling pathway. This study identifies the cancer-promoting role of SCIN and provides a potential therapeutic target for SCIN in glioma treatment.

4.
Mar Drugs ; 22(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921571

RESUMO

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fator 6 Associado a Receptor de TNF , Humanos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fator 6 Associado a Receptor de TNF/metabolismo , Organismos Aquáticos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Farmacóforo , Peptídeos e Proteínas de Sinalização Intracelular
5.
World J Clin Oncol ; 15(5): 591-593, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38835841

RESUMO

Colorectal cancer ranks among the most commonly diagnosed cancers globally, and is associated with a high rate of pelvic recurrence after surgery. In efforts to mitigate recurrence, pelvic lymph node dissection (PLND) is commonly advocated as an adjunct to radical surgery. Neoadjuvant chemoradiotherapy (NACRT) is a therapeutic approach employed in managing locally advanced rectal cancer, and has been found to increase the survival rates. Chua et al have proposed a combination of NACRT with selective PLND for addressing lateral pelvic lymph node metastases in rectal cancer patients, with the aim of reducing recurrence and improving survival outcomes. Nevertheless, certain studies have indicated that the addition of PLND to NACRT and total mesorectal excision did not yield a significant reduction in local recurrence rates or improvement in survival. Consequently, meticulous patient selection and perioperative chemotherapy may prove indispensable in ensuring the efficacy of PLND.

6.
Int Immunopharmacol ; 133: 112098, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626551

RESUMO

Lung cancer is a serious health issue globally, and current treatments have proven to be inadequate. Therefore, immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway have become a viable treatment option in lun cancer. Honokiol, a lignan derived from Magnolia officinalis, has been found to possess anti-inflammatory, antioxidant, and antitumor properties. Our research found that honokiol can effectively regulate PD-L1 through network pharmacology and transcriptome analysis. Cell experiments showed that honokiol can significantly reduce PD-L1 expression in cells with high PD-L1 expression. Molecular docking, cellular thermal shift assay (CETSA) and Bio-Layer Interferometry (BLI)indicated that Honokiol can bind to PD-L1. Co-culture experiments on lung cancer cells and T cells demonstrated that honokiol mediates PD-L1 degradation, stimulates T cell activation, and facilitates T cell killing of tumor cells. Moreover, honokiol activates CD4 + and CD8 + T cell infiltration in vivo, thus suppressing tumor growth in C57BL/6 mice. In conclusion, this study has demonstrated that honokiol can inhibit the growth of lung cancer by targeting tumor cell PD-L1, suppressing PD-L1 expression, blocking the PD-1/PD-L1 pathway, and enhancing anti-tumor immunity.


Assuntos
Antígeno B7-H1 , Compostos de Bifenilo , Regulação Neoplásica da Expressão Gênica , Lignanas , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Animais , Humanos , Camundongos , Compostos Alílicos , Antígeno B7-H1/metabolismo , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Lignanas/farmacologia , Lignanas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Ativação Linfocitária/efeitos dos fármacos , Fenóis
8.
World J Clin Oncol ; 15(3): 367-370, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576589

RESUMO

The COP9 signalosome subunit 6 (COPS6) is abnormally overexpressed in many malignancies, yet its precise role in carcinogenesis is unknown. To gain a better understanding of COPS6's role, the authors conducted a pan-cancer analysis using various bioinformatics techniques such as differential expression patterns, prognostic value, gene mutations, immune infiltration, correlation analysis, and functional enrichment assessment. Results showed that COPS6 was highly correlated with prognosis, immune cell infiltration level, tumor mutation burden, and microsatellite instability in patients with a range of tumor types. This suggests that COPS6 may be a potential target for cancer treatment. Overall, this research provides insight into COPS6's role in cancer development and its potential therapeutic applications.

9.
World J Clin Oncol ; 15(3): 375-377, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576594

RESUMO

Colorectal cancer (CRC) is a form of cancer that is often resistant to chemotherapy, targeted therapy, radiotherapy, and immunotherapy due to its genomic instability and inflammatory tumor microenvironment. Ferroptosis, a type of non-apoptotic cell death, is characterized by the accumulation of iron and the oxidation of lipids. Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells. Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance. Moreover, the gut, responsible for regulating iron absorption and release, could influence CRC susceptibility through iron metabolism modulation. Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management, potentially revolutionizing treatment approaches for therapy-resistant cancers.

10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641013

RESUMO

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Assuntos
Araquidonato 15-Lipoxigenase , Asma , Células Epiteliais , Ferroptose , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Animais , Asma/patologia , Asma/metabolismo , Asma/genética , Humanos , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Modelos Animais de Doenças , Linhagem Celular , Feminino , Araquidonato 12-Lipoxigenase
11.
Crit Rev Oncol Hematol ; 197: 104349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626848

RESUMO

Ferroptosis, a novel form of cell death regulation, was identified in 2012. It is characterized by unique features that differentiate it from other types of cell death, including necrosis, apoptosis, autophagy, and pyroptosis. Ferroptosis is defined by an abundance of iron ions and lipid peroxidation, resulting in alterations in subcellular structures, an elevation in reactive oxygen species (ROS), a reduction in glutathione (GSH) levels, and an augmentation in Fe (II) cytokines. Ferroptosis, a regulated process, is controlled by an intricate network of signaling pathways, where multiple stimuli can either enhance or hinder the process. This review primarily examines the defensive mechanisms of ferroptosis and its interaction with the tumor microenvironment. The analysis focuses on the pathways that involve AMPK, p53, NF2, mTOR, System Xc-, Wnt, Hippo, Nrf2, and cGAS-STING. The text discusses the possibilities of employing a combination therapy that targets several pathways for the treatment of cancer. It emphasizes the necessity for additional study in this field.


Assuntos
Ferroptose , Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo
12.
World J Clin Oncol ; 15(2): 175-177, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38455138

RESUMO

Zhuo et al looked into the part of transmembrane 9 superfamily member 1 (TM9SF1) in bladder cancer (BC), and evaluated if it can be used as a therapeutic target. They created a permanent BC cell line and tested the effects of TM9SF1 overexpression and suppression on BC cell growth, movement, invasion, and cell cycle advancement. Their results show that TM9SF1 can boost the growth, movement, and invasion of BC cells and their access into the G2/M stage of the cell cycle. This research gives a novel direction and concept for targeted therapy of BC.

13.
J Biomol Struct Dyn ; : 1-14, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38444388

RESUMO

Abnormal expression of PRDX has been found to play a significant role in the growth of colorectal cancer and other types of tumors. Despite the identification of several PRDX1 inhibitory compounds in recent years, none of them have been utilized in clinical treatments. Therefore, we conducted a virtual screening of 210,331 small molecules from the SPECS library using PRDX1 and multiple methods. From this screening, we identified 13 compounds with the highest scores from the molecular docking analysis. To further validate the accuracy of our pharmacophore model, we constructed a structure-based pharmacophore model and analyzed the receiver operating characteristic curve (ROC curve). Through this process, we selected nine compounds using skeleton jumping and virtual screening based on the highest pharmacophore model scores. Subsequently, we examined the ADMET properties of these nine compounds to assess their drug-forming potential, resulting in three compounds with the best drug properties. Finally, we assessed the binding stability of these three candidate molecules to proteins using molecular dynamics and MM-PBSA calculations. After a comprehensive evaluation, we found that compounds 6 and 9 formed stable complexes with PRDX1 proteins and could potentially serve as competitive inhibitors of PRDX1 substrates.Communicated by Ramaswamy H. Sarma.

14.
Phytomedicine ; 128: 155384, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547620

RESUMO

BACKGROUND: Ferroptosis is a type of cell death caused by excessive iron-induced peroxidation. It has been found to be involved in a variety of diseases, and natural products can be used to target ferroptosis in treatments. Natural products are biologically active compounds extracted or synthesized from nature. It is an important resource for the discovery of skeletons with a high degree of structural diversity and a wide range of bioactivities, which can be developed directly or used as a starting point for the optimization of new drugs. PURPOSE: In this review, we aim to discuss the interactions between natural products and ferroptosis in the treatment of human diseases. METHODS: Literature was searched in Pubmed, Science Direct, and Web of Science databases for the 11-year period from 2012 to 2023 using the search terms "natural products", "ferroptosis", "human disease", "neurodegenerative disease", "cardiovascular disease", and "cancer". RESULTS: In this research, the roles of natural products and ferroptosis were investigated. We suggest that natural products, such as terpenoids, flavonoids, polyphenols, alkaloids, and saponins, can be used in therapeutic applications for human diseases, as well as in ferroptosis. Additionally, the main mechanisms of ferroptosis were summarized and discussed. Furthermore, we propose that natural products can be utilized to enhance the sensitivity of cancer cells to ferroptosis, thus helping to overcome drug resistance and inhibit metastasis. Moreover, natural products have the potential to modulate the expression levels of ferroptosis-related factors. Finally, the future directions of this field were highlighted. CONCLUSION: The potential of natural products which focus on ferroptosis to treat human illnesses, particularly cancer, is very encouraging for human wellbeing.


Assuntos
Produtos Biológicos , Ferroptose , Neoplasias , Ferroptose/efeitos dos fármacos , Humanos , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico
15.
Chem Biodivers ; 21(4): e202301993, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342755

RESUMO

A new alkaloids, aplysingoniopora A (1), and new configuration pregnane type steroid compound, 9,17-α-pregn-1,4,20-en-3-one (2), and two known pregnane type steroid compounds (3 and 4) were isolated from hydranth of Goniopora columna corals. The compounds structures and absolute configurations were determined by extensive spectroscopic analysis, MS data, single-crystal X-ray diffraction analysis and quantum chemical calculation. The anticancer effect of the compounds were explored in human non-small-cell lung cancer (NSCLC) A549 cell lines. As the results, the compound 3 and 4 induces toxicity and has proliferation inhibitory effects on A549 cells (IC50=58.99 µM and 58.77 µM, respectively) in vitro.


Assuntos
Alcaloides , Antozoários , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Alcaloides/farmacologia , Alcaloides/química , Esteroides/farmacologia , Esteroides/química , Pregnanos/farmacologia , Estrutura Molecular
16.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167101, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423372

RESUMO

BACKGROUND: Sepsis is a major cause of mortality in patients, and ARDS is one of the most common outcomes. The pathophysiology of acute respiratory distress syndrome (ARDS) caused by sepsis is significantly impacted by genes related to ferroptosis. METHODS: In this study, Weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) networks, functional enrichment analysis, and machine learning were employed to identify characterized genes and to construct receiver operating characteristic (ROC) curves. Additionally, DNA methylation levels were quantified and single-cell analysis was conducted. To validate the alterations in the expression of Lipocalin-2 (LCN2) and ferroptosis-related proteins in the in vitro model, Western blotting was carried out, and the changes in intracellular ROS and Fe2+ levels were detected. RESULTS: A combination of eight machine learning algorithms, including RFE, LASSO, RandomForest, SVM-RFE, GBDT, Bagging, XGBoost, and Boruta, were used with a machine learning model to highlight the significance of LCN2 as a key gene in sepsis-induced ARDS. Analysis of immune cell infiltration showed a positive correlation between neutrophils and LCN2. In a cell model induced by LPS, it was found that Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, was able to reverse the expression of LCN2. Knocking down LCN2 in BEAS-2B cells reversed the LPS-induced lipid peroxidation, Fe2+ levels, ACSL4, and GPX4 levels, indicating that LCN2, a ferroptosis-related gene (FRG), plays a crucial role in mediating ferroptosis. CONCLUSION: Upon establishing an FRG model for individuals with sepsis-induced ARDS, we determined that LCN2 could be a dependable marker for predicting survival in these patients. This finding provides a basis for more accurate ARDS diagnosis and the exploration of innovative treatment options.


Assuntos
Ferroptose , Síndrome do Desconforto Respiratório , Sepse , Humanos , Lipocalina-2/genética , Ferroptose/genética , Lipopolissacarídeos , Sepse/complicações , Sepse/genética , Biomarcadores , Aprendizado de Máquina , Síndrome do Desconforto Respiratório/genética
17.
Mar Drugs ; 22(2)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38393054

RESUMO

PLK1 is found to be highly expressed in various types of cancers, but the development of inhibitors for it has been slow. Most inhibitors are still in clinical stages, and many lack the necessary selectivity and anti-tumor effects. This study aimed to create new inhibitors for the PLK1-PBD by focusing on the PBD binding domain, which has the potential for greater selectivity. A 3D QSAR model was developed using a dataset of 112 compounds to evaluate 500 molecules. ADMET prediction was then used to select three molecules with strong drug-like characteristics. Scaffold hopping was employed to reconstruct 98 new compounds with improved drug-like properties and increased activity. Molecular docking was used to compare the efficient compound abbapolin, confirming the high-activity status of [(14S)-14-hydroxy-14-(pyridin-2-yl)tetradecyl]ammonium,[(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium. Molecular dynamics simulations and MMPBSA were conducted to evaluate the stability of the compounds in the presence of proteins. An in-depth analysis of [(14S)-15-(2-furyl)-14-hydroxypentadecyl]ammonium and [(14S)-14-hydroxy-14-phenyltetradecyl]ammonium identified them as potential candidates for PLK1 inhibitors.


Assuntos
Compostos de Amônio , Produtos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Farmacóforo , Produtos Biológicos/farmacologia
18.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286859

RESUMO

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Assuntos
Ferroptose , Ribonucleosídeo Difosfato Redutase , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Ceco , Modelos Animais de Doenças , Ferroptose/genética , Sepse/genética , Fator de Necrose Tumoral alfa , Ribonucleosídeo Difosfato Redutase/metabolismo
19.
J Sci Food Agric ; 104(6): 3757-3766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234098

RESUMO

BACKGROUND: Our preliminary research revealed that the polysaccharide GP90 from Gracilariopsis lemaneiformis enhanced the antitumor effect of cisplatin, indicating that GP90 may increase the chemotherapeutic sensitivity. However, it is still necessary to fully understand whether GP90 can also improve the intestinal barrier dysfunction and systemic inflammation induced by cisplatin. RESULTS: GP90 has been demonstrated to inhibit the excessive release of nitirc oxide, interleukin (IL)-6, IL-1ß and tumor necrosis factor (TNF)-α induced by lipopolysaccharide in RAW264.7 cells. In vivo, GP90 effectively ameliorated the decrease in the serum CD4+ /CD8+ T-cell ratio induced by cisplatin and significantly reduced the increase in the inflammatory cytokines, CD4+ Foxp3+ , CD4+ granzyme B+ and CD4+ TNF-α induced by cisplatin. Furthermore, when combined with cisplatin, GP90 increases the protein expression levels of mucin-2 and zonula occludens-1 in the mouse small intestine. Additionally, GP90 combined with cisplatin has a modulatory effect on the intestinal microbiota by elevating the Firmicutes-to-Bacteroidetes ratio and the relative abundance of beneficial microorganisms (Lachnospiraceae bacterium), at the same time as reducing the abundance of cisplatin specific Bacteroides acidifaciens and elevating the content of butyric acid and isobutyric acid. CONCLUSION: Collectively, these findings indicate that GP90 potentially mitigates inflammation and protects the intestinal barrier in tumor-bearing organisms undergoing chemotherapy. © 2024 Society of Chemical Industry.


Assuntos
Carcinoma , Neoplasias do Colo , Enteropatias , Camundongos , Animais , Cisplatino/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Fator de Necrose Tumoral alfa/genética , Lipopolissacarídeos/efeitos adversos , Interleucina-6 , Colo , Camundongos Endogâmicos C57BL
20.
Aging Dis ; 15(2): 714-738, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548939

RESUMO

Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.


Assuntos
Doenças Cardiovasculares , Ferroptose , Humanos , Apoptose , Morte Celular , Mitocôndrias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA