Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thromb Res ; 239: 109030, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38735166

RESUMO

OBJECTIVES: This review aims to compare the performance of available risk assessment models (RAMs) for predicting peripherally inserted central catheter-related venous thrombosis (PICC-RVT) in adult patients with cancer. METHODS: A systematic search was conducted across ten databases from inception to October 20, 2023. Studies were eligible if they compared the accuracy of a RAM to that of another RAM for predicting the risk of PICC-RVT in adult patients with cancer. Two reviewers independently performed the study selection, data extraction and risk of bias assessments. A Bayesian network meta-analysis (NMA) was used to evaluate the performance of the RAMs. RESULTS: A total of 1931 studies were screened, and 7 studies with 10 RAMs were included in the review. The most widely used RAMs were the Caprini (4 studies), Padua prediction score (3 studies), Autar (3 studies), Michigan risk score (2 studies) and Seeley score (2 studies). The sensitivity, specificity and accuracy varied markedly between the models. Notably, the Caprini score achieved higher sensitivity than 4 RAMs (Wells, Revised Geneva, modified MRS, MRS). The Michigan risk score had greater specificity than did the other 6 RAMs (Caprini, Autar, Padua, Seeley, the novel RAM, Wells). The predictive accuracy of the MRS is significantly greater than that of the Caprini and Autar RAM. CONCLUSION: The MRS could be the most accurate RAM for identifying patients at high risk of PICC-RVT. However, as limited studies are available, more rigorous studies should be conducted to examine the accuracy of the Michigan risk score for PICC-RVT in different contexts.

2.
Chemosphere ; 353: 141378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442777

RESUMO

Tetrabromobisphenol A bis (2- hydroxyethyl) ether (TBBPA-DHEE), as one of the main derivatives of Tetrabromobisphenol A, been attracted attention for its health risks. In this study, the neurotoxicity, mechanism, and susceptivity of TBBPA-DHEE exposure to sexually developing male rats were systematically studied. Neurobehavioral research showed that TBBPA-DHEE exposure could significantly affect the behavior, learning,and memory abilities of male-developing rats, and aggravate their depression. TBBPA-DHEE exposure could inhibit the secretion of neurotransmitters. Transcriptomics studies show that TBBPA-DHEE can significantly affect gene expression, and a total of 334 differentially expressed genes are enriched. GO function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of genes related to synapses and cell components. KEGG function enrichment analysis shows that TBBPA-DHEE exposure can significantly affect the expression of signal pathways related to nerves, nerve development, and signal transduction. Susceptibility analysis showed that female rats were more susceptible to TBBPA-DHEE exposure than male rats. Therefore, TBBPA-DHEE exposure has neurodevelopmental toxicity to male developmental rats, and female developmental rats are more susceptible than male developmental rats. Its possible molecular mechanism is that TBBPA-DHEE may inhibit the secretion of neurotransmitters and affect signal pathways related to neurodevelopment and signal transduction.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Feminino , Masculino , Ratos , Animais , Éter , Ratos Sprague-Dawley , Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Etil-Éteres , Neurotransmissores , Retardadores de Chama/toxicidade , Retardadores de Chama/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-36442598

RESUMO

Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17ß-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Humanos , Feminino , Masculino , Peixe-Zebra/genética , Éter , Transcriptoma , Éteres/análise , Etil-Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Bifenil Polibromatos/química , Sistemas Neurossecretores , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 858(Pt 3): 160089, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370800

RESUMO

TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in the environment has raised serious public health concerns due to its potential neuroendocrine-disrupting effects. The neuroendocrine-disrupting effects of TBBPA-DHEE on marine spices, on the other hand, have received little attention. The behavioral, neuroendocrine-disrupting, and possible reproductive toxicity of TBBPA-DHEE were assessed in sexual developing zebrafish treated for 40 days by examining locomotor activity, Gonadotrophin releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, and quantifying gene expression. In addition, transcriptome profiling was carried out to explore the possible mechanisms. According to our findings, TBBPA-DHEE treated zebrafish showed altered locomotor activity, a potential neuroendocrine-disrupting effect via the toxic effect on the hypothalamus and pituitary gland, which is evident in decreased levels of GnRH, FSH, and LH, according to our findings. The transcriptomic profiling reveals that a total of 216 DEGs were detected (5 upregulated and 211 down-regulated). Transcriptomic analysis shows that TBBPA-DHEE exposure caused decreased transcript levels of genes (cyp11a1, ccna1, ccnb2, ccnb1, cpeb1b, wee2) involved in cell cycle oocyte meiosis, progesterone mediated oocyte maturation, and ovarian steroidogenesis, which are known reproduction-related pathways. Overall, these findings add to our understanding of the impact of TBBPA-DHEE and biomonitoring in the maritime environment.


Assuntos
Desenvolvimento Sexual , Peixe-Zebra , Animais , Hormônio Liberador de Gonadotropina
5.
Artigo em Inglês | MEDLINE | ID: mdl-36473636

RESUMO

TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE), one of the main derivatives of TBBPA, has been widely detected in environmental samples and been discovered to be potential neurotoxic. In this study, the juvenile zebrafish were selected as the research subject to explore the neurotoxicity and its mechanism of low-dose TBBPA-DHEE exposure, and to reveal the neurotoxicity susceptibility in different sexes. Behavioral studies revealed that TBBPA-DHEE could significantly reduce the swimming velocity, maximum acceleration and cumulative duration of high-speed mobility, significantly increasing the cumulative duration of low-speed mobility and average social distance. It significantly reduced the contents of ATP, glutamate and Ca2+ in the whole brain. The histopathological study demonstrated that TBBPA-DHEE could cause brain tissue damage in female and male juvenile zebrafish. The comprehensive data analysis indicated that female zebrafish were more susceptible to TBBPA-DHEE exposure than male zebrafish. Transcriptomic analysis showed that TBBPA-DHEE could significantly affect the expressions of behavioral and development-related genes. Furthermore, female and male juvenile zebrafish have different molecular mechanisms of neurotoxicity. For female juvenile zebrafish, the potential mechanism of neurotoxicity could be that it interfered with the feedback regulation of nerves by affecting the related genes expressions in the signaling pathways such as Ca2+ signaling, Wnt signaling and synapses. For male juvenile zebrafish, the potential mechanism of neurotoxicity may be through affecting the expression of related genes in hormones and neuro-related genes. This research could reveal the potential neurotoxicity of TBBPA-DHEE to aquatic organisms, which will be helpful to reveal the health effects of the emerging environmental pollutants.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Feminino , Masculino , Peixe-Zebra/genética , Éter , Éteres/análise , Etil-Éteres , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/análise , Retardadores de Chama/toxicidade
6.
Artigo em Inglês | MEDLINE | ID: mdl-35640788

RESUMO

Tetrabromobisphenol A bis(2-hydroxyetyl) ether (TBBPA-DHEE) is among the main derivatives of Tetrabromobisphenol A (TBBPA). Result from previous study showed that TBBPA-DHEE can cause neurotoxicity in rat. In this study, zebrafish larvae were used for evaluation of TBBPA-DHEE-induced developmental toxicity, apoptosis, oxidative stress and the potential molecular mechanisms of action. Our result showed that TBBPA-DHEE exposure caused a significant concentration-dependent developmental toxicity endpoints like death rate, malformation rate, growth rate. TBBPA-DHEE altered locomotor and enzymes activities of larvae and caused apoptosis within the brain indicating the potential TBBPA-DHEE-induced cardiac, brain impairment in the zebrafish larvae. Our transcriptomic analysis shows that 691 genes were differentially expressed (DEGs) (539 upregulated, 152 downregulated). The KEGG and GO enrichment pathway analysis shows that the DEGs were involved in development, immunity, enzyme activity. Our study provides novel evidence on the neurodevelopmental toxicity and toxicity mechanism of TBBPA-DHEE which are vital for assessment of the environmental toxicity and risk assessment of the chemical.


Assuntos
Retardadores de Chama , Bifenil Polibromatos , Animais , Éter/metabolismo , Éteres/análise , Éteres/metabolismo , Retardadores de Chama/toxicidade , Larva/metabolismo , Bifenil Polibromatos/análise , Bifenil Polibromatos/química , Bifenil Polibromatos/toxicidade , Ratos , Transcriptoma , Peixe-Zebra/metabolismo
7.
J Nat Prod ; 85(4): 972-979, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35385664

RESUMO

MS/MS-based molecular networking strain prioritization led to the discovery of a group of cyclic depsipeptides from an endolichenic Xylaria sp. The main component, xylaroamide A (1), was obtained by LC-MS-guided isolation. The planar structure of compound 1 was elucidated via 1D and 2D NMR, as well as MS/MS data. The configurations were fully determined by the combination of advanced Marfey's analysis, partial hydrolysis, Mosher's reaction, and GIAO NMR calculation based on a restricted conformational search. A plausible biosynthetic pathway for xylaroamide A (1) involving a rare trans-acting N-methyltransferase is proposed based on bioinformatics analysis. Xylaroamide A (1) exhibited inhibitory activity against cancer cell lines BT-549 and RKO with IC50 values of 2.5 and 9.5 µM, respectively.


Assuntos
Depsipeptídeos , Xylariales , Depsipeptídeos/química , Conformação Molecular , Estrutura Molecular , Peptídeos Cíclicos/química , Espectrometria de Massas em Tandem , Xylariales/química
8.
BMC Neurol ; 21(1): 417, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706659

RESUMO

OBJECTIVE: Postoperative cerebrospinal fluid (CSF) leakage represents a challenge even for experienced pituitary surgeons. We aimed to quantitatively synthesize data from studies regarding the risk factors for postoperative CSF leakage after transsphenoidal surgery (TSS) for pituitary adenoma (PA). METHODS: PubMed, Web of Science, The Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Wanfang database, and VIP database were searched for case-control and cohort studies, focusing on the risk factors associated with postoperative CSF leakage after TSS for PA. Pooled odds ratios (ORs) and 95% confidence intervals were calculated to determine the risk factors. RESULTS: A total of 34 case-control and cohort studies involving a total of 9,144 patients with PA were included in this systematic review. The overall rate of postoperative CSF leakage after TSS for PA was 5.6%. Tumor size, adenoma consistency, revision surgery, and intraoperative CSF leakage were independent risk factors for postoperative CSF leakage (ORs, 3.18-6.33). By contrast, the endoscopic approach showed a slight protective benefit compared with the microscopic approach in TSS (OR, 0.69). CONCLUSIONS: This review provides a comprehensive overview of the quality of the evidence base, informing clinical staff of the importance of screening risk factors for postoperative CSF leakage after TSS for PA. More attention should be paid to PA patients at high risk for CSF leakage after TSS to reduce complications and improve prognosis.


Assuntos
Adenoma , Neoplasias Hipofisárias , Adenoma/cirurgia , Vazamento de Líquido Cefalorraquidiano/epidemiologia , Vazamento de Líquido Cefalorraquidiano/etiologia , Humanos , Neoplasias Hipofisárias/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA