Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626263

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.


Assuntos
Complexo de Golgi , Herpesvirus Humano 8 , Lipoilação , Proteínas Virais , Vírion , Replicação Viral , Herpesvirus Humano 8/fisiologia , Herpesvirus Humano 8/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Humanos , Vírion/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral/fisiologia , Células HEK293
2.
Viruses ; 16(4)2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675960

RESUMO

Reactivation and infection with cytomegalovirus (CMV) are frequently observed in recipients of solid organ transplants, bone marrow transplants, and individuals with HIV infection. This presents an increasing risk of allograft rejection, opportunistic infection, graft failure, and patient mortality. Among immunocompromised hosts, interstitial pneumonia is the most critical clinical manifestation of CMV infection. Recent studies have demonstrated the potential therapeutic benefits of exosomes derived from mesenchymal stem cells (MSC-exos) in preclinical models of acute lung injury, including pneumonia, ARDS, and sepsis. However, the role of MSC-exos in the pathogenesis of infectious viral diseases, such as CMV pneumonia, remains unclear. In a mouse model of murine CMV-induced pneumonia, we observed that intravenous administration of mouse MSC (mMSC)-exos reduced lung damage, decreased the hyperinflammatory response, and shifted macrophage polarization from the M1 to the M2 phenotype. Treatment with mMSC-exos also significantly reduced the infiltration of inflammatory cells and pulmonary fibrosis. Furthermore, in vitro studies revealed that mMSC-exos reversed the hyperinflammatory phenotype of bone marrow-derived macrophages infected with murine CMV. Mechanistically, mMSC-exos treatment decreased activation of the NF-κB/NLRP3 signaling pathway both in vivo and in vitro. In summary, our findings indicate that mMSC-exo treatment is effective in severe CMV pneumonia by reducing lung inflammation and fibrosis through the NF-κB/NLRP3 signaling pathway, thus providing promising therapeutic potential for clinical CMV infection.


Assuntos
Modelos Animais de Doenças , Exossomos , Células-Tronco Mesenquimais , Muromegalovirus , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Muromegalovirus/fisiologia , Camundongos Endogâmicos C57BL , Macrófagos/imunologia , Infecções por Citomegalovirus/terapia , Infecções por Citomegalovirus/virologia , Pulmão/virologia , Pulmão/patologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , Infecções por Herpesviridae/terapia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/imunologia , Pneumonia/terapia , Pneumonia/virologia
3.
PLoS Pathog ; 19(5): e1011304, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146061

RESUMO

Human cytomegalovirus (HCMV) infection is associated with human glioblastoma, the most common and aggressive primary brain tumor, but the underlying infection mechanism has not been fully demonstrated. Here, we show that EphA2 was upregulated in glioblastoma and correlated with the poor prognosis of the patients. EphA2 silencing inhibits, whereas overexpression promotes HCMV infection, establishing EphA2 as a crucial cell factor for HCMV infection of glioblastoma cells. Mechanistically, EphA2 binds to HCMV gH/gL complex to mediate membrane fusion. Importantly, the HCMV infection was inhibited by the treatment of inhibitor or antibody targeting EphA2 in glioblastoma cells. Furthermore, HCMV infection was also impaired in optimal glioblastoma organoids by EphA2 inhibitor. Taken together, we propose EphA2 as a crucial cell factor for HCMV infection in glioblastoma cells and a potential target for intervention.


Assuntos
Infecções por Citomegalovirus , Glioblastoma , Receptor EphA2 , Humanos , Proteínas do Envelope Viral/metabolismo , Glioblastoma/genética , Citomegalovirus/fisiologia , Receptor EphA2/genética
4.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37058447

RESUMO

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Assuntos
Glioma , Proteínas Imediatamente Precoces , Animais , Humanos , Camundongos , Citomegalovirus/fisiologia , Regulação para Baixo , Expressão Gênica , Glioma/genética , Glioma/patologia , Proteínas Imediatamente Precoces/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Virol Sin ; 38(3): 373-379, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36940800

RESUMO

Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.


Assuntos
Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Neurônios
6.
PLoS Pathog ; 19(2): e1011166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753521

RESUMO

Congenital human cytomegalovirus (HCMV) infection causes severe damage to the fetal brain, and the underlying mechanisms remain elusive. Cytokine signaling is delicately controlled in the fetal central nervous system to ensure proper development. Here we show that suppressor of cytokine signaling 3 (SOCS3), a negative feedback regulator of the IL-6 cytokine family signaling, was upregulated during HCMV infection in primary neural progenitor cells (NPCs) with a biphasic expression pattern. From viral protein screening, pUL97 emerged as the viral factor responsible for prolonged SOCS3 upregulation. Further, by proteomic analysis of the pUL97-interacting host proteins, regulatory factor X 7 (RFX7) was identified as the transcription factor responsible for the regulation. Depletion of either pUL97 or RFX7 prevented the HCMV-induced SOCS3 upregulation in NPCs. With a promoter-luciferase activity assay, we demonstrated that the pUL97 kinase activity and RFX7 were required for SOCS3 upregulation. Moreover, the RFX7 phosphorylation level was increased by either UL97-expressing or HCMV-infection in NPCs, suggesting that pUL97 induces RFX7 phosphorylation to drive SOCS3 transcription. We further revealed that elevated SOCS3 expression impaired NPC proliferation and migration in vitro and caused NPCs migration defects in vivo. Taken together, these findings uncover a novel regulatory mechanism of sustained SOCS3 expression in HCMV-infected NPCs, which perturbs IL-6 cytokine family signaling, leads to NPCs proliferation and migration defects, and consequently affects fetal brain development.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/fisiologia , Interleucina-6/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Células-Tronco , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
7.
J Med Virol ; 94(11): 5492-5506, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35879101

RESUMO

During the long coevolution of human cytomegalovirus (HCMV) and humans, the host has formed a defense system of multiple layers to eradicate the invader, and the virus has developed various strategies to evade host surveillance programs. The intrinsic immunity primarily orchestrated by promyelocytic leukemia (PML) nuclear bodies (PML-NBs) represents the first line of defense against HCMV infection. Here, we demonstrate that microrchidia family CW-type zinc finger 3 (MORC3), a PML-NBs component, is a restriction factor targeting HCMV infection. We show that depletion of MORC3 through knockdown by RNA interference or knockout by CRISPR-Cas9 augmented immediate-early protein 1 (IE1) gene expression and subsequent viral replication, and overexpressing MORC3 inhibited HCMV replication by suppressing IE1 gene expression. To relief the restriction, HCMV induces transient reduction of MORC3 protein level via the ubiquitin-proteasome pathway during the immediate-early to early stage. However, MORC3 transcription is upregulated, and the protein level recovers in the late stages. Further analyses with temporal-controlled MORC3 expression and the major immediate-early promoter (MIEP)-based reporters show that MORC3 suppresses MIEP activity and consequent IE1 expression with the assistance of PML. Taken together, our data reveal that HCMV enforces temporary loss of MORC3 to evade its repression against the initiation of immediate-early gene expression.


Assuntos
Infecções por Citomegalovirus , Proteínas Imediatamente Precoces , Adenosina Trifosfatases/metabolismo , Citomegalovirus/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Replicação Viral
8.
Microbiol Spectr ; 10(3): e0186421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467404

RESUMO

Autism spectrum disorder (ASD), a highly hereditary and heterogeneous neurodevelopmental disorder, is influenced by genetic and environmental factors. Tuberous sclerosis complex (TSC) is a common syndrome associated with ASD. Cytomegalovirus (CMV) infection is an environmental risk factor for ASD. The similarities in pathological and mechanistic pathways of TSC and CMV intrigued us to investigate whether CMV and TSC interacted in ASD's occurrence. We detected CMV IgG seroprevalence of 308 TSC patients from our prospective cohort (September 2011 to March 2021) and 93 healthy children by magnetic particle indirect chemiluminescence immunoassay. A total of 206 TSC patients enrolled were divided into ASD and non-ASD groups, and the relationship between ASD and CMV seroprevalence was analyzed. Nested PCR and Western blot were used to detect CMV DNAs and proteins in cortical malformations of seven TSC patients with and without ASD. No difference was found in CMV seroprevalence between TSC patients and healthy children (74.0% versus 72.0%, P = 0.704). Univariate analysis showed the seroprevalence in TSC patients with ASD was higher than that in TSC patients without ASD (89.2% versus 75.1%, P = 0.063), and multifactorial analysis showed that CMV seroprevalence was a risk factor for ASD in TSC patients (OR = 3.976, 95% CI = 1.093 to 14.454). Moreover, CMV was more likely to be detected in the cortical malformations in TSC patients with ASD but not in those without ASD. The findings demonstrated that CMV may increase the susceptibility of TSC to ASD. IMPORTANCE CMV is an environmental risk factor for ASD, but its role in syndromic autism with known genetic etiology has been rarely studied. The pathogenesis of ASD is related to the interaction between environmental and genetic factors. This study demonstrated that CMV can contribute to the occurrence of ASD related to TSC, a common genetic syndrome associated with ASD. Our findings provided support for the theory of gene-environment interaction (G × E) in pathogenesis of ASD and a new perspective for the prevention and therapy for TSC related ASD.


Assuntos
Transtorno do Espectro Autista , Infecções por Citomegalovirus , Esclerose Tuberosa , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/etiologia , Criança , Citomegalovirus/genética , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/epidemiologia , Humanos , Estudos Prospectivos , Estudos Soroepidemiológicos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/epidemiologia , Esclerose Tuberosa/genética
9.
Ocul Immunol Inflamm ; 30(4): 809-820, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33226275

RESUMO

PURPOSES: To understand the pathogenesis in rat corneal endothelial cells (RCECs) induced by murine cytomegalovirus infection in vitro and in vivo. METHODS: In vitro, cultured RCECs were infected with murine cytomegalovirus strain K181-eGFP (MCMV-eGFP). In vivo, experimental rats received intracameral injection of MCMV-eGFP. Replicating viruses and morphology change of RCECs in vivo were evaluated at several time points. RESULTS: In vitro, RCECs became necrosis at 6hpi. MCMV-eGFP began replicating at 12hpi. In vivo, the inflammatory reactions appeared at 12hpi, peaked at 72hpi and gradually subsided. Replicating MCMV-eGFP appeared in RCECs in vivo from 24hpi to 72hpi. RCECs enlarged after 12hpi and capsids in the nuclei were visible at 72hpi. A monocyte was found on a corneal endothelium at 120hpi. CONCLUSIONS: RCECs were sensitive to MCMV in vitro. Replication of MCMV-eGFP in vivo began at 24hpi and ended after 72hpi, later than the inflammatory reactions.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Células Endoteliais , Endotélio Corneano , Células Epiteliais , Camundongos , Ratos
10.
J Virol ; 96(2): e0147621, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34730396

RESUMO

Human cytomegalovirus (HCMV) establishes a persistent/latent infection after primary infection, and the host factor(s) plays a key role in regulating HCMV infection status. The spread of reactivated HCMV via the hematogenous or neural route usually results in severe diseases in newborns and immunocompromised individuals. As the primary reservoirs in vivo, cells of myeloid lineage have been utilized extensively to study HCMV infection. However, the molecular mechanism of HCMV latency/reactivation in neural cells is still poorly understood. We previously showed that HCMV-infected T98G cells maintain a large number of viral genomes and support HCMV reactivation from latency upon cAMP/IBMX treatment. Here, we employed an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics to characterize cellular protein changes during HCMV latency and reactivation in T98G cells. A total of 168 differentially expressed proteins (DEPs) were identified, including 89 proteins in latency and 85 proteins in reactivation. Bioinformatics analysis showed that a few biological pathways were associated with HCMV latency or reactivation. Moreover, we validated 16 DEPs by both mRNA and protein expression profiles and further evaluated the effects of ApoE and the phosphatidylinositol 3-kinase (PI3K) pathway on HCMV infection. ApoE knockdown reduced HCMV loads and virus release, whereas overexpressing ApoE hampered HCMV latent infection, indicating a role in HCMV latency establishment/maintenance. Blocking the PI3K pathway by LY294002, a PI3K inhibitor, induced HCMV reactivation from latency in T98G cells. Overall, this comparative proteomics analysis delineates the cellular protein changes during HCMV latency and reactivation and provides a road map to advance our understanding of the mechanism(s) in the context of neural cells. IMPORTANCE Human cytomegalovirus (HCMV) is a highly transmissible betaherpesvirus that has a prevalence of 60% to 90% worldwide. This opportunist pathogen poses a significant threat to newborns and immunosuppressed individuals. One major obstacle for developing effective therapeutics is a poor understanding of HCMV latency/reactivation mechanisms. This study presents, for the first time, a systemic analysis of host cell protein expression changes during HCMV latency establishment and reactivation processes in neural cells. We showed that ApoE was downregulated by HCMV to facilitate latent infection. Also, the proteomics analysis has associated a few PI3K pathway-related proteins with HCMV reactivation. Altogether, this study highlights multiple host proteins and signaling pathways that can be further investigated as potential druggable targets for HCMV-related diseases, especially brain disorders.


Assuntos
Citomegalovirus/fisiologia , Proteômica , Ativação Viral , Latência Viral , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , Ontologia Genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mapas de Interação de Proteínas , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais
11.
J Neurosci Methods ; 350: 109021, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316318

RESUMO

Cell tracking is a useful technique to monitor specific cell populations for their morphology, development, proliferation, migration, interaction, function, and other properties, both in vitro and in vivo. Using different materials and methodologies to label the target cells directly or indirectly, the dynamic biological processes in living organisms can be visualized with appropriate detection techniques. Viruses, with the unique ability to deliver exogenous genes into host cells, have been used as vectors to mediate gene transfer. Genetic labeling of target cells by viral vectors endows the cells to express reporter genes with high efficiency and specificity. In conjunction with corresponding imaging techniques, cells labeled with different genetic reporters mediated by different viral vectors can be monitored across spatial and temporal scales to fulfill various purposes and address different questions. In the present review, we introduce the basic principle of viral vectors in cell tracking and highlight the examples of cell tracking in various research areas.


Assuntos
Rastreamento de Células , Vetores Genéticos , Técnicas de Transferência de Genes , Genes Reporter , Vetores Genéticos/genética
13.
Oncogene ; 40(1): 46-54, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051598

RESUMO

Chronic BK polyomavirus (BKPyV) infection is recognized as a potential oncogenic factor of urothelial carcinoma (UC) in renal transplant recipients. Recent studies have reported a positive correlation among BKPyV integration, persistent overexpression of viral large T antigen (TAg), and malignancy, yet little is known about the specific integration mechanisms and the impacts of viral integration. Here, we performed whole-genome sequencing (WGS) and viral capture-based sequencing on high-grade immunohistochemically TAg-positive UCs in two renal transplant recipients. A total of 181 integration sites, including the three found by WGS, were identified by viral capture-based sequencing, indicating its enhanced sensitivity and ability in identifying low-read integration sites in subpopulations of the tumor cells. The microhomologies between human and BKPyV genomes were significantly enriched in the flanking regions of 84.5% the integration sites, with a median length of 7 bp. Notably, 75 human genes formed fusion sequences due to viral insertional integration. Among them, the expression of 15 genes were statistically associated with UC based on GEO2R expression analysis. Our results indicated a multisite and multifragment linear integration pattern and a potential microhomology or nonhomologous end joining integration mechanism at the single-nucleotide level. We put forward a potential selection mechanism driven by immunity and centered on viral integration in the carcinogenesis of BKPyV.


Assuntos
Vírus BK/fisiologia , Redes Reguladoras de Genes , Transplante de Rim/efeitos adversos , Infecções por Polyomavirus/genética , Infecções Tumorais por Vírus/genética , Neoplasias da Bexiga Urinária/virologia , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Antígenos Virais de Tumores/metabolismo , Vírus BK/genética , Quebra Cromossômica , Feminino , Genoma Humano , Genoma Viral , Humanos , Falência Renal Crônica/terapia , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Neoplasias da Bexiga Urinária/genética , Integração Viral
14.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824837

RESUMO

Herpes simplex virus type 1 (HSV-1) has great potential to be applied as a viral tool for gene delivery or oncolysis. The broad infection tropism of HSV-1 makes it a suitable tool for targeting many different cell types, and its 150 kb double-stranded DNA genome provides great capacity for exogenous genes. Moreover, the features of neuron infection and neuron-to-neuron spread also offer special value to neuroscience. HSV-1 strain H129, with its predominant anterograde transneuronal transmission, represents one of the most promising anterograde neuronal circuit tracers to map output neuronal pathways. Decades of development have greatly expanded the H129-derived anterograde tracing toolbox, including polysynaptic and monosynaptic tracers with various fluorescent protein labeling. These tracers have been applied to neuroanatomical studies, and have contributed to revealing multiple important neuronal circuits. However, current H129-derived tracers retain intrinsic drawbacks that limit their broad application, such as yet-to-be improved labeling intensity, potential nonspecific retrograde labeling, and high toxicity. The biological complexity of HSV-1 and its insufficiently characterized virological properties have caused difficulties in its improvement and optimization as a viral tool. In this review, we focus on the current H129-derived viral tracers and highlight strategies in which future technological development can advance its use as a tool.


Assuntos
Herpesvirus Humano 1/metabolismo , Técnicas de Rastreamento Neuroanatômico/métodos , Animais , Engenharia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Herpesvirus Humano 1/genética , Neurônios/metabolismo , Sinapses/metabolismo
16.
J Neurovirol ; 25(4): 525-539, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31144288

RESUMO

Herpes simplex virus 1 (HSV-1) is a predominant cause of herpes simplex encephalitis (HSE), leading to a high mortality rate and severe neurological sequelae worldwide. HSE is typically accompanied by the blood-brain barrier (BBB) disruption, but the underlying mechanisms are unclear. To explore the disruption mechanisms of the BBB, quantitative analysis of the cellular proteome was carried out to investigate the proteomic changes that occur after infection. In this study, bEnd.3 cells were infected with HSV-1, followed by liquid chromatography-tandem mass spectrometry. A total of 6761 proteins were identified in three independent mass spectrometry analyses. Compared to the uninfected cells, 386 and 293 differentially expressed proteins were markedly upregulated or downregulated, respectively. Bioinformatic analysis showed that the activator protein-1 factor, including Fos, Jun, and ATF family proteins and cell adhesion molecules were significantly changed. Further validation of the changes observed for these proteins was carried out by western blotting and quantitative real-time PCR. Transendothelial electrical resistance (TEER) studies were performed to explore the effects of ATF3, Fra1, or JunB overexpression on the function of bEnd.3 cells. Characterization of the differential expression of these proteins in bEnd.3 cells will facilitate further exploration of BBB disruption upon HSV-1 infection.


Assuntos
Fator 3 Ativador da Transcrição/genética , Encefalite por Herpes Simples/genética , Células Endoteliais/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Encéfalo/metabolismo , Encéfalo/virologia , Linhagem Celular , Encefalite por Herpes Simples/metabolismo , Encefalite por Herpes Simples/virologia , Células Endoteliais/virologia , Regulação da Expressão Gênica , Ontologia Genética , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Modelos Biológicos , Anotação de Sequência Molecular , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral
17.
PLoS Pathog ; 15(4): e1007680, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943264

RESUMO

Mediator of IRF3 activation (MITA, also known as STING and ERIS) is an essential adaptor protein for cytoplasmic DNA-triggered signaling and involved in innate immune responses, autoimmunity and tumorigenesis. The activity of MITA is critically regulated by ubiquitination and deubiquitination. Here, we report that USP49 interacts with and deubiquitinates MITA after HSV-1 infection, thereby turning down cellular antiviral responses. Knockdown or knockout of USP49 potentiated HSV-1-, cytoplasmic DNA- or cGAMP-induced production of type I interferons (IFNs) and proinflammatory cytokines and impairs HSV-1 replication. Consistently, Usp49-/- mice exhibit resistance to lethal HSV-1 infection and attenuated HSV-1 replication compared to Usp49+/+ mice. Mechanistically, USP49 removes K63-linked ubiquitin chains from MITA after HSV-1 infection which inhibits the aggregation of MITA and the subsequent recruitment of TBK1 to the signaling complex. These findings suggest a critical role of USP49 in terminating innate antiviral responses and provide insights into the complex regulatory mechanisms of MITA activation.


Assuntos
Herpes Simples/prevenção & controle , Imunidade Inata/imunologia , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Antivirais , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1 , Humanos , Lisina/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Células THP-1 , Ubiquitina Tiolesterase/genética , Ubiquitinação , Replicação Viral
18.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258013

RESUMO

To countermeasure the host cellular intrinsic defense, cytomegalovirus (CMV) and herpes simplex viruses (HSV) have evolved the ability to disperse nuclear domain 10 (ND10, aka PML body). However, mechanisms underlying their action on ND10 differ. HSV infection produces ICP0, which degrades the ND10-forming protein PML. Human CMV (HCMV) infection expresses IE1 that deSUMOylates PML to result in dispersion of ND10. It has been demonstrated that HSV ICP0 degraded only the SUMOylated PML, so we hypothesized that HCMV IE1 can protect PML from degradation by ICP0. HCMV IE1-expressing cell lines (U-251 MG-IE1 and HELF-IE1) were used for infection of HSV-1 or transfection of ICP0-expressing plasmid. Multilabeling by immunocytochemistry assay and protein examination by Western blot assay were performed to determine the resultant fate of PML caused by ICP0 in the presence or absence of HCMV IE1. Here, we report that deSUMOylation of human PML (hPML) by HCMV IE1 was incomplete, as mono-SUMOylated PML remained in the IE1-expressing cells, which is consistent with the report by E. M. Schilling, M. Scherer, N. Reuter, J. Schweininger, et al. (J Virol 91:e02049-16, 2017, https://doi.org/10.1128/JVI.02049-16). As expected, we found that IE1 protected PML from degradation by ICP0 or HSV-1 infection. An in vitro study found that IE1 with mutation of L174P failed to deSUMOylate PML and did not protect PML from degradation by ICP0; hence, we conclude that the deSUMOylation of PML is important for IE1 to protect PML from degradation by ICP0. In addition, we revealed that murine CMV failed to deSUMOylate and to protect the HSV-mediated degradation of hPML, and that HCMV failed to deSUMOylate and protect the HSV-mediated degradation of mouse PML. However, IE1-expressing cells did not enhance wild-type HSV-1 replication but significantly increased ICP0-defective HSV-1 replication at a low multiplicity of infection. Therefore, our results uncovered a host-virus functional interaction at the posttranslational level.IMPORTANCE Our finding that HCMV IE1 protected hPML from degradation by HSV ICP0 is important, because the PML body (aka ND10) is believed to be the first line of host intrinsic defense against herpesviral infection. How the infected viruses overcome the nuclear defensive structure (PML body) has not been fully understood. Herpesviral proteins, ICP0 of HSV and IE1 of CMV, have been identified to interact with PML. Here, we report that HCMV IE1 incompletely deSUMOylated PML, resulting in the mono-SUMOylated PML, which is consistent with the report of Schilling et al. (J Virol 91:e02049-16, 2017, https://doi.org/10.1128/JVI.02049-16). The mono-SUMOylated PML was subjected to degradation by HSV ICP0. However, it was protected by IE1 from degradation by ICP0 or HSV-1 infection. In contrast, IE1 with L174P mutation lost the function of deSUMOylating PML and failed to protect the degradation of the mono-SUMOylated PML. Whether the mono-SUMOylated PML has any defensive function against viral infection will be further investigated.


Assuntos
Infecções por Citomegalovirus/metabolismo , Herpes Simples/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Proteólise , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Cultivadas , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Herpes Simples/genética , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Camundongos , Proteína da Leucemia Promielocítica/química , Proteína da Leucemia Promielocítica/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral
19.
Cell Host Microbe ; 24(1): 69-80.e4, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937271

RESUMO

The cytosolic DNA sensor cGAS recognizes viral DNA and synthesizes the second messenger cGAMP upon viral infection. cGAMP binds to the adaptor protein MITA/STING to activate downstream signaling events, leading to induction of type I interferons (IFNs) and antiviral effector genes. Here we identify the human cytomegalovirus (HCMV) protein UL31 as an inhibitor of cGAS. UL31 interacts directly with cGAS and disassociates DNA from cGAS, thus inhibiting cGAS enzymatic functions and reducing cGAMP production. UL31 overexpression markedly reduces antiviral responses stimulated by cytosolic DNA, while knockdown or knockout of UL31 heightens HCMV-triggered induction of type I IFNs and downstream antiviral genes. Moreover, wild-type HCMV replicates more efficiently than UL31-deficient HCMV, a phenotype that is reversed in cGAS null cells. These results highlight the importance of cGAS in the host response to HCMV as well as an important viral strategy to evade this innate immune sensor.


Assuntos
Citomegalovirus/fisiologia , Evasão da Resposta Imune/imunologia , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/antagonistas & inibidores , Proteínas Virais/metabolismo , Citomegalovirus/genética , DNA Viral/genética , DNA Viral/metabolismo , Fibroblastos , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Imunidade Inata/imunologia , Interferon Tipo I/metabolismo , Proteínas Nucleares/genética , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Cultura Primária de Células , Proteínas Virais/genética
20.
J Immunol ; 201(1): 53-68, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760190

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the flaviviruses that targets the CNS and causes encephalitis in humans. The mechanism of TBEV that causes CNS destruction remains unclear. It has been reported that RANTES-mediated migration of human blood monocytes and T lymphocytes is specifically induced in the brain of mice infected with TBEV, which causes ensuing neuroinflammation and may contribute to brain destruction. However, the viral components responsible for RANTES induction and the underlying mechanisms remain to be fully addressed. In this study, we demonstrate that the NS5, but not other viral proteins of TBEV, induces RANTES production in human glioblastoma cell lines and primary astrocytes. TBEV NS5 appears to activate the IFN regulatory factor 3 (IRF-3) signaling pathway in a manner dependent on RIG-I/MDA5, which leads to the nuclear translocation of IRF-3 to bind with RANTES promoter. Further studies reveal that the activity of RNA-dependent RNA polymerase (RdRP) but not the RNA cap methyltransferase is critical for TBEV NS5-induced RANTES expression, and this is likely due to RdRP-mediated synthesis of dsRNA. Additional data indicate that the residues at K359, D361, and D664 of TBEV NS5 are critical for RdRP activity and RANTES induction. Of note, NS5s from other flaviviruses, including Japanese encephalitis virus, West Nile virus, Zika virus, and dengue virus, can also induce RANTES expression, suggesting the significance of NS5-induced RANTES expression in flavivirus pathogenesis. Our findings provide a foundation for further understanding how flaviviruses cause neuroinflammation and a potential viral target for intervention.


Assuntos
Quimiocina CCL5/biossíntese , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Encefalite Transmitida por Carrapatos/patologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Encéfalo/patologia , Encéfalo/virologia , Linhagem Celular Tumoral , Quimiocina CCL5/genética , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Células HEK293 , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Imunológicos , Células Vero , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA