Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Natl Cancer Inst ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702830

RESUMO

BACKGROUND: TP53 alterations are common in certain pediatric cancers, making identification of putative germline variants through tumor genomic profiling crucial for patient management. METHODS: We analyzed TP53 alterations in 3123 tumors from 2788 pediatric patients sequenced using tumor-only or tumor-normal paired panels. Germline confirmatory testing was performed when indicated. Somatic and germline variants were classified following published guidelines. RESULTS: In 248 tumors from 222 patients, 284 Tier 1/2 TP53 sequence and small copy number variants were detected. Following germline classification, 73.9% of 142 unique variants were pathogenic/likely pathogenic (P/LP). Confirmatory testing on 118 patients revealed germline TP53 variants in 28 patients (23 P/LP and 5 uncertain significance), suggesting a minimum Li-Fraumeni syndrome (LFS) incidence of 0.8% (23/2788) in this cohort, 10.4% (23/222) in patients with TP53 variant-carrying tumors, and 19.5% (23/118) with available normal samples. About 25% (7/28) of patients with germline TP53 variants did not meet LFS diagnostic/testing criteria while 20.9% (28/134) with confirmed or inferred somatic origins did. TP53 biallelic inactivation occurred in 75% of germline carrier tumors and was also prevalent in other groups, causing an elevated tumor-observed variant allelic fraction (VAF). However, somatic evidence including low VAF correctly identified only 27.8% (25/90) of patients with confirmed somatic TP53 variants. CONCLUSION: The high incidence and variable phenotype of LFS in this cohort highlights the importance of assessing germline status of TP53 variants identified in all pediatric tumors. Without clear somatic evidence, distinguishing somatic from germline origins is challenging. Classifying germline and somatic variants should follow appropriate guidelines.

2.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631221

RESUMO

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/mortalidade , Glioma/imunologia , Glioma/metabolismo , Prognóstico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/imunologia , Biomarcadores Tumorais/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores CXCR4/metabolismo
3.
Genes Chromosomes Cancer ; 63(4): e23233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607297

RESUMO

Medulloblastomas, the most common malignant pediatric brain tumors, can be classified into the wingless, sonic hedgehog (SHH), group 3, and group 4 subgroups. Among them, the SHH subgroup with the TP53 mutation and group 3 generally present with the worst patient outcomes due to their high rates of recurrence and metastasis. A novel and effective treatment for refractory medulloblastomas is urgently needed. To date, the tumor microenvironment (TME) has been shown to influence tumor growth, recurrence, and metastasis through immunosuppression, angiogenesis, and chronic inflammation. Treatments targeting TME components have emerged as promising approaches to the treatment of solid tumors. In this review, we summarize progress in research on medulloblastoma microenvironment components and their interactions. We also discuss challenges and future research directions for TME-targeting medulloblastoma therapy.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Humanos , Criança , Proteínas Hedgehog/genética , Meduloblastoma/genética , Microambiente Tumoral/genética , Neoplasias Cerebelares/genética
6.
J Mol Diagn ; 26(3): 191-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103590

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Hemoglobinúria Paroxística , Humanos , Criança , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos
8.
Oncol Res ; 31(6): 929-936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744277

RESUMO

Non-small cell lung cancer (NSCLC) is a highly lethal cancer, and better treatments are urgently needed. Many studies have implicated circular RNAs (circRNAs) in the progression of multiple malignant tumors. Nonetheless, the functions of circRNAs in NSCLC remain unclear. To study new targets for the treatment of NSCLC, circRNA expression profiling was performed on NSCLC tissues and para-carcinoma nonmalignant tissues. RNA was isolated and used for circRNA sequencing. Biological studies were performed in vitro and in vivo to determine the functions of circRNAs in NSCLC, including their functions in cell proliferation and migration. How circRNAs function in NSCLC was explored to clarify the underlying regulatory mechanisms. We found that circUCP2 was upregulated in NSCLC tissues compared with neighboring nonmalignant tissues. circUCP2 promoted the proliferation and metastasis of NSCLC cells. circUCP2 promoted NSCLC progression by sponging miR-149 and upregulating UCP2. The circUCP2/miR-149/UCP2 axis accelerates the progression of NSCLC, and circUCP2 may therefore be a novel diagnostic biomarker for the progression of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Circular/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteína Desacopladora 2/genética
9.
Front Endocrinol (Lausanne) ; 13: 865913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865311

RESUMO

In this study, atypical choroid plexus papilloma was treated with high-dose rapamycin for 17 days preoperatively in an infant. Rapamycin significantly reduced the blood supply to the tumor while reducing the tumor volume, and most of the tumor was resected successfully. However, the infant developed hyperglycemia related to the rapamycin dose, which was effectively controlled by adjusting the dose and applying insulin.


Assuntos
Neoplasias do Plexo Corióideo , Glioma , Hiperglicemia , Papiloma do Plexo Corióideo , Neoplasias do Plexo Corióideo/patologia , Neoplasias do Plexo Corióideo/terapia , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Lactente , Papiloma do Plexo Corióideo/patologia , Papiloma do Plexo Corióideo/cirurgia , Sirolimo/efeitos adversos
10.
Acta Neuropathol Commun ; 10(1): 102, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836290

RESUMO

CIC-rearranged sarcomas are newly defined undifferentiated soft tissue tumors with CIC-associated fusions, and dismal prognosis. CIC fusions activate PEA3 family genes, ETV1/4/5, leading to tumorigenesis and progression. We report two high-grade CNS sarcomas of unclear histological diagnosis and one disseminated tumor of unknown origin with novel fusions and similar gene-expression/methylation patterns without CIC rearrangement. All three patients were infants with aggressive diseases, and two experienced rapid disease deterioration and death. Whole-transcriptome sequencing identified an ATXN1-NUTM2A fusion in the two CNS tumors and an ATXN1L-NUTM2A fusion in case 3. ETV1/4/5 and WT1 overexpression were observed in all three cases. Methylation analyses predicted CIC-rearranged sarcoma for all cases. Retrospective IHC staining on case 2 demonstrated ETV4 and WT1 overexpression. ATXN1 and ATXN1L interact with CIC forming a transcription repressor complex. We propose that ATXN1/ATXN1L-associated fusions disrupt their interaction with CIC and decrease the transcription repressor complex, leading to downstream PEA3 family gene overexpression. These three cases with novel ATXN1/ATXN1L-associated fusions and features of CIC-rearranged sarcomas may further expand the scope of "CIC-rearranged" sarcomas to include non-CIC rearrangements. Additional cases are needed to demonstrate if ATXN1/ATXN1L-NUTM2A fusions are associated with younger age and more aggressive diseases.


Assuntos
Sarcoma de Células Pequenas , Sarcoma , Neoplasias de Tecidos Moles , Ataxina-1/genética , Biomarcadores Tumorais/genética , Expressão Gênica , Humanos , Lactente , Metilação , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética , Estudos Retrospectivos , Sarcoma/genética , Sarcoma/patologia , Sarcoma de Células Pequenas/diagnóstico , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Neoplasias de Tecidos Moles/genética , Fatores de Transcrição/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-35232817

RESUMO

Li-Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2-6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.


Assuntos
Neoplasias do Córtex Suprarrenal , Neoplasias da Mama , Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Adulto , Neoplasias da Mama/genética , Criança , Feminino , Duplicação Gênica/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética
12.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065284

RESUMO

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Assuntos
Exoma , Patologia Molecular , Criança , Exoma/genética , Humanos , Mutação , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
13.
Bioengineered ; 12(2): 12636-12645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34927544

RESUMO

The ubiquitin hydrolase OTUB1 has been elucidated to be highly expressed in tumors, however, its roles in glioma progression are still confusing. Here, via analyzing several online datasets, OTUB1 expression was shown to be remarkably increased in glioma tissues compared to that in the adjacent tissues, and predicted a poor overall survival of glioma patients. Then OTUB1 was knocked down in glioma cells and it was found that OTUB1 knockdown significantly reduced glioma cell stemness by detecting sphere-formation ability, stemness marker expression, and ALDH activity. Mechanistic experiments revealed that OTUB1 stabilized SLC7A11 protein via directly interacting with SLC7A11, which is a key suppressor of ferripotosis. Indeed, OTUB1 knockdown triggered ferroptosis dependent on SLC7A11 expression. Notably, ectopic expression of SLC7A11 attenuated the inhibition of OTUB1 knockdown on the stemenss of glioma cells. Finally, we found a positive correlation between OTUB1 and SLC7A11 expression in clinical samples. Taken together, this work identifies a novel OTUB1/SLC7A11 axis contributing to glioma cell stemness.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Enzimas Desubiquitinantes/metabolismo , Ferroptose , Glioma/metabolismo , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Neoplásicas/patologia , Ligação Proteica , Estabilidade Proteica , Análise de Sobrevida
14.
JAMA Oncol ; 7(10): 1521-1528, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410295

RESUMO

IMPORTANCE: Alterations in the IKZF1 gene drive B-cell acute lymphoblastic leukemia (B-ALL) but are not routinely used to stratify patients by risk because of inconsistent associations with outcomes. We describe a novel deletion in 22q11.22 that was consistently associated with very poor outcomes in patients with B-ALL with IKZF1 alterations. OBJECTIVE: To determine whether focal deletions within the λ variable chain region in chromosome 22q11.22 were associated with patients with B-ALL with IKZF1 alterations with the highest risk of relapse and/or death. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included 1310 primarily high-risk pediatric patients with B-ALL who were taken from 6 independent clinical cohorts, consisting of 3 multicenter cohorts (AALL0232 [2004-2011], P9906 [2000-2003], and patients with Down syndrome who were pooled from national and international studies) and 3 single-institution cohorts (University of Utah [Salt Lake City], Children's Hospital of Philadelphia [Philadelphia, Pennsylvania], and St. Jude Children's Hospital [Memphis, Tennessee]). Data analysis began in 2011 using patients from the older studies first, and data analysis concluded in 2021. EXPOSURES: Focal 22q11.22 deletions. MAIN OUTCOMES AND MEASURES: Event-free and overall survival was investigated. The hypothesis that 22q11.22 deletions stratified the prognostic effect of IKZF1 alterations was formulated while investigating nearby deletions in VPREB1 in 2 initial cohorts (n = 270). Four additional cohorts were then obtained to further study this association (n = 1040). RESULTS: This study of 1310 patients with B-ALL (717 male [56.1%] and 562 female patients [43.9%]) found that focal 22q11.22 deletions are frequent (518 of 1310 [39.5%]) in B-ALL and inconsistent with physiologic V(D)J recombination. A total of 299 of 1310 patients with B-ALL had IKZF1 alterations. Among patients with IKZF1 alterations, more than half shared concomitant focal 22q11.22 deletions (159 of 299 [53.0%]). Patients with combined IKZF1 alterations and 22q11.22 deletions had worse outcomes compared with patients with IKZF1 alterations and wild-type 22q11.22 alleles in every cohort examined (combined cohorts: 5-year event-free survival rates, 43.3% vs 68.5%; hazard ratio [HR], 2.18; 95% CI, 1.54-3.07; P < .001; 5-year overall survival rates, 66.9% vs 83.9%; HR, 2.05; 95% CI, 1.32-3.21; P = .001). While 22q11.22 deletions were not prognostic in patients with wild-type IKZF1 , concomitant 22q11.22 deletions in patients with IKZF1 alterations stratified outcomes across additional risk groups, including patients who met the IKZF1plus criteria, and maintained independent significance in multivariate analysis for event-free survival (HR, 2.05; 95% CI, 1.27-3.29; P = .003) and overall survival (HR, 1.83; 95% CI, 1.01-3.34; P = .05). CONCLUSIONS AND RELEVANCE: This cohort study suggests that 22q11.22 deletions identify patients with B-ALL and IKZF1 alterations who have very poor outcomes and may offer a new genetic biomarker to further refine B-ALL risk stratification and treatment strategies.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Estudos de Coortes , Feminino , Deleção de Genes , Humanos , Fator de Transcrição Ikaros/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico
15.
Artigo em Inglês | MEDLINE | ID: mdl-34036219

RESUMO

PURPOSE: Neurotrophic tyrosine receptor kinase (NTRK) fusions have been described as oncogenic drivers in a variety of tumors. However, little is known about the overall frequency of NTRK fusion in unselected pediatric tumors. Here, we assessed the frequency, fusion partners, and clinical course in pediatric patients with NTRK fusion-positive tumors. PATIENTS AND METHODS: We studied 1,347 consecutive pediatric tumors from 1,217 patients who underwent tumor genomic profiling using custom-designed DNA and RNA next-generation sequencing panels. NTRK fusions identified were orthogonally confirmed. RESULTS AND DISCUSSION: NTRK fusions were identified in 29 tumors from 27 patients with a positive yield of 2.22% for all patients and 3.08% for solid tumors. Although NTRK2 fusions were found exclusively in CNS tumors and NTRK1 fusions were highly enriched in papillary thyroid carcinomas, NTRK3 fusions were identified in all tumor categories. The most canonical fusion was ETV6-NTRK3 observed in 10 patients with diverse types of tumors. Several novel NTRK fusions were observed in rare tumor types, including KCTD16-NTRK1 in ganglioglioma and IRF2BP2-NTRK3 in papillary thyroid carcinomas. The detection of an NTRK fusion confirmed the morphologic diagnosis including five cases where the final tumor diagnosis was largely based on the discovery of an NTRK fusion. In one patient, the diagnosis was changed because of the identification of an ETV6-NTRK3 fusion. One patient with infantile fibrosarcoma was treated with larotrectinib and achieved complete pathologic remission. CONCLUSION: NTRK fusions are more frequently seen in pediatric tumors than in adult tumors and involve a broader panel of fusion partners and a wider range of tumors than previously recognized. These results highlight the importance of screening for NTRK fusions as part of the tumor genomic profiling for patients with pediatric cancer.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33832921

RESUMO

Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia but is approximately 500 times more likely to develop in children with Down syndrome (DS) through transformation of transient abnormal myelopoiesis (TAM). This study investigates the clinical significance of genomic heterogeneity of AMKL in children with and without DS and in children with TAM. Genomic evaluation of nine patients with DS-related TAM or AMKL, and six patients with non-DS AMKL, included conventional cytogenetics and a comprehensive next-generation sequencing panel for single-nucleotide variants/indels and copy-number variants in 118 genes and fusions involving 110 genes. Recurrent gene fusions were found in all patients with non-DS, including two individuals with complex genomes and either a NUP98-KDM5A or a KMT2A-MLLT6 fusion, and the remaining harbored a CBFA2T3-GLIS2 fusion, which arose from both typical and atypical cytogenetic mechanisms. These fusions guided treatment protocols and resulted in a change in diagnosis in two patients. The nine patients with DS had constitutional trisomy 21 and somatic GATA1 mutations, and those with DS-AMKL had two to four additional clinically significant somatic mutations. Comprehensive genomic characterization provides critical information for diagnosis, risk stratification, and treatment decisions for patients with AMKL. Continued genetic and clinical characterization of these rare cancers will aid in improving patient management.


Assuntos
Genômica , Leucemia Megacarioblástica Aguda/genética , Leucemia/genética , Neoplasias/genética , Criança , Pré-Escolar , Cromossomos , Proteínas de Ligação a DNA/genética , Síndrome de Down/complicações , Síndrome de Down/genética , Feminino , Fator de Transcrição GATA1 , Predisposição Genética para Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Recém-Nascido , Cariótipo , Fatores de Transcrição Kruppel-Like/genética , Reação Leucemoide/genética , Masculino , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Neoplasias/genética , Proteínas Repressoras/genética , Proteína 2 de Ligação ao Retinoblastoma/genética
17.
J Clin Neurosci ; 86: 87-96, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33775353

RESUMO

Medulloblastoma (MB), the most common malignant childhood brain tumor, is a serious threat to life. Circular RNA (circRNA) is involved in the development of various cancers, including MB. We aimed to explore the role of circRNA spindle and kinetochore associated complex subunit 3 (circ-SKA3) in MB progression. Circ-SKA3 expression was elevated in MB tissues and cells. Depleted expression of circ-SKA3 inhibited MB cell proliferation, migration and invasion and induced apoptosis and cell cycle arrest, and circ-SKA3 knockdown inhibited MB growth in vivo. Mechanism analyses revealed that circ-SKA3 directly targeted miR-326 that could bind to ID3, and circ-SKA3 decoyed miR-326 to increasing ID3 expression. Rescue experiments showed that miR-326 inhibition reversed the effects of circ-SKA3 knockdown, and ID3 overexpression recovered MB cell proliferation, migration and invasion blocked by miR-326 restoration. In conclusion, circ-SKA3 functioned as an oncogene to promote the development of MB by increasing ID3 expression via decoying miR-326, hinting that circ-SKA3 might be a therapeutic target of MB.


Assuntos
Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas Inibidoras de Diferenciação/biossíntese , Meduloblastoma/metabolismo , MicroRNAs/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas de Neoplasias/biossíntese , RNA Circular/biossíntese , Animais , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Masculino , Meduloblastoma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , RNA Circular/genética , Regulação para Cima/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
18.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398081

RESUMO

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Assuntos
Frequência do Gene , Perda Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Recessivos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Lactente , Judeus/genética , Masculino , Mutação , Linhagem , Splicing de RNA
19.
Brain Pathol ; 31(1): 45-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32681571

RESUMO

Congenital brain tumors are rare accounting for 0.5%-1.9% of all pediatric brain tumors. While different criteria have been used to classify a tumor as congenital, those diagnosed prior to 6 months of age are considered to be "probably" congenital in origin. We performed an institutional review of all central nervous system (CNS) tumors (surgical and autopsy specimens from 1990 to 2019) in patients less than 6 months old. Sixty-four unique cases were identified, and these accounted for 2.0% of all CNS tumor specimens at our institution. The most common tumor types were high-grade gliomas, low-grade gliomas and medulloblastomas. Atypical teratoid rhabdoid tumors, choroid plexus tumors and germ cell tumors also accounted for a significant portion of the cohort. Seven tumors were diagnosed prenatally. The most common clinical presentation at diagnosis was increased head circumference. At the conclusion of the study, over half of the patients were alive including all patients with WHO grade I and II tumors. Ninety-two percent of cases were classifiable using the 2016 WHO system, and when available, molecular findings supported the histologic diagnoses. However, several gliomas had unusual histologic features and did not correspond to a well-defined entity. Molecular testing was essential for accurate classification of a subset of these tumors, and several high-grade gliomas exhibited fusions considered unique to infantile gliomas, including those involving the MET, ALK and NTRK genes. To our knowledge, this cohort represents the largest single-institution study of congenital CNS tumors and highlights many ways in which congenital CNS tumors are distinct from CNS tumors of older pediatric patients and adults.


Assuntos
Neoplasias Encefálicas/congênito , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
20.
J Transl Med ; 18(1): 293, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738923

RESUMO

BACKGROUND: Circulating tumor DNA (ctDNA) offers a convenient way to monitor tumor progression and treatment response. Because tumor mutational profiles are highly variable from person to person, a fixed content panel may be insufficient to track treatment response in all patients. METHODS: We design ctDNA fingerprint panels specific to individual patients which are based on whole exome sequencing and target to high frequency clonal population clusters in patients. We test the fingerprint panels in 313 patients who together have eight tumor types (colorectal, hepatocellular, gastric, breast, pancreatic, and esophageal carcinomas and lung cancer and cholangiocarcinoma) and exposed to multiple treatment methods (surgery, chemotherapy, radiotherapy, targeted-drug therapy, immunotherapy, and combinations of them). We also monitor drug-related mutations in the patients using a pre-designed panel with eight hotspot genes. RESULTS: 291 (93.0%) designed fingerprint panels harbor less than ten previously known tumor genes. We detected 7475 ctDNA mutations in 238 (76%) patients and 6196 (96.0%) of the mutations are detected in only one test. Both the level of ctDNA content fraction (CCF) and fold change of CCF (between the definitive and proceeding tests) are highly correlated with clinical outcomes (p-values 1.36e-6 for level and 5.64e-10 for fold change, Kruskal-Wallis test). The CCFs of PD patients are an order of magnitude higher than the CCFs of SD and OR patients (median/mean 2.22%/8.96% for SD, 0.18/0.21% for PD, and 0.31/0.54% for OR; pairwise p-values 7.8e-6 for SD ~ PD, 2.7e-4 for OR ~ PD, and 7.0e-3 for SD ~ OR, Wilcoxon rank sum test). The fold change of CCF distinguishes the patient groups even better, which increases for PD, remains stable for SD, and decreases for OR patients (p-values 0.002, ~ 1, and 0.0001 respectively, Wilcoxon signed-rank test). Eleven drug-related mutations are identified from nine out of the 313 patients. CONCLUSIONS: The ctDNA fingerprint method improves both specificity and sensitivity of monitoring treatment response across several tumor types. It can identify tumor relapse/recurrence potentially earlier than imaging-based diagnosis. When augmented with tumor hotspot genes, it can track acquired drug-related mutations in patients.


Assuntos
DNA Tumoral Circulante , Neoplasias , Biomarcadores Tumorais , DNA Tumoral Circulante/genética , DNA de Neoplasias , Genes Neoplásicos , Humanos , Mutação/genética , Recidiva Local de Neoplasia/genética , Neoplasias/sangue , Neoplasias/genética , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA