Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 15(8): 2329-2339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495491

RESUMO

Lung squamous cell carcinoma (LUSC) accounts for approximately 25% to 30% of lung cancers, but largely no targeted therapy is available against it, calling for identification of new oncogenes in LUSC growth for new therapeutic targets. In this study, REL was identified through a screening for oncogenes that are highly amplified in human LUSC. Its expression was associated with poor prognosis in LUSC patients. Furthermore, knockdown of c-Rel in LUSC cell lines lead to significant decrease in cell proliferation and migration. Mechanistically, c-Rel knockdown suppressed NFκB pathway by blocking phosphorylation of IκB. Consistently, pharmaceutic inhibition of c-Rel also. In orthotopic xenograft lung cancer mouse model, c-Rel knockdown inhibited the tumor growth. Cancer cell proliferation and epithelial-mesenchymal-transition (EMT) of the tumors were impaired by c-Rel knockdown. Finally, it's confirmed in precision-cut tumor slices of LUSC that deletion of c-Rel inhibits the NFκB pathway and cancer cell growth. Accordingly, we hypothesize that c-Rel promotes the activation of the NFκB pathway by promoting the phosphorylation of IκB in LUSC. Our study reveals REL as a novel LUSC oncogene and provides new insights into the molecular regulation of LUSC, which will provide new therapeutic targets for the treatment of squamous lung cancer.

2.
Life Sci ; 321: 121578, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958438

RESUMO

AIMS: Lung squamous cell carcinoma (LUSC) causes over 400,000 deaths annually, yet it lacks targeted therapy. A major antagonist of Hedgehog pathway, HHIP (Hedgehog Interacting Protein) plays an important role in LUSC; however, the regulatory mechanism remains unclear. Long non-coding RNA HHIP-AS1 plays suppressive or promotive roles in different cancers, but its role in LUSC remains unknown. This manuscript is to investigate regulatory mechanism of HHIP and the role of HHIP-AS1 in LUSC. MAIN METHODS: Precision-cut lung slices (PCLS) from human LUSC samples are cultured to mimic LUSC growth. Overexpression and knockdown in multiple LUSC cell lines and PCLS are achieved by lentivirus infection. Transcriptome profile and lung cancer activity are evaluated by RNA-sequencing, immunostaining and CCK8 assay etc. KEY FINDINGS: HHIP is regulated independently of Hh pathway in LUSC. Additionally, downregulation of HHIP-AS1 is associated with poor prognosis. Consistently, HHIP-AS1 inhibits LUSC growth by suppressing cell proliferation and migration. Transcriptome profiling of HHIP-AS1 knockdown (KD) cells uncovered HHIP downregulation. Interestingly, a comparison between the transcriptomes of HHIP-AS1 KD or HHIP KD cells manifested high similarity. Subsequently it's confirmed that HHIP-AS1 regulates HHIP in LUSC cells. Notably, HHIP-AS1 regulation on LUSC growth is achieved through stabilizing HHIP mRNA rather than regulating MIR-153-3P/PCDHGA9 or MIR-425-5P/DNYC1I2. Finally, it's confirmed in PCLS from human LUSC samples that HHIP-AS1 suppresses LUSC via regulating HHIP mRNA. SIGNIFICANCE: This study uncovers HHIP-AS1 as a novel tumor suppressor in LUSC and provides new insights into the molecular regulation of LUSC, which will help developing new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proliferação de Células/genética , Pulmão/patologia , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Transporte/genética , Glicoproteínas de Membrana/genética
3.
Sci Transl Med ; 14(661): eabm7621, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579533

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus driving the ongoing coronavirus disease 2019 (COVID-19) pandemic, continues to rapidly evolve. Because of the limited efficacy of vaccination in prevention of SARS-CoV-2 transmission and continuous emergence of variants of concern (VOCs), orally bioavailable and broadly efficacious antiviral drugs are urgently needed. Previously, we showed that the parent nucleoside of remdesivir, GS-441524, has potent anti-SARS-CoV-2 activity. Here, we report that esterification of the 5'-hydroxyl moieties of GS-441524 markedly improved antiviral potency. This 5'-hydroxyl-isobutyryl prodrug, ATV006, demonstrated excellent oral bioavailability in rats and cynomolgus monkeys and exhibited potent antiviral efficacy against different SARS-CoV-2 VOCs in vitro and in three mouse models. Oral administration of ATV006 reduced viral loads and alleviated lung damage when administered prophylactically and therapeutically to K18-hACE2 mice challenged with the Delta variant of SARS-CoV-2. These data indicate that ATV006 represents a promising oral antiviral drug candidate for SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Pró-Fármacos , Adenosina/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ratos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA