Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Adipocyte ; 13(1): 2365211, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38858810

RESUMO

microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.


Assuntos
Adipogenia , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , MicroRNAs , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , MicroRNAs/metabolismo , Suínos , Adipogenia/genética , Células Cultivadas , Transdução de Sinais , Adipócitos/citologia , Adipócitos/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo
2.
Cell Prolif ; : e13646, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623945

RESUMO

Transglutaminase 2 (Tgm2) plays an essential role in hepatic repair following prolonged toxic injury. During cholestatic liver injury, the intrahepatic cholangiocytes undergo dynamic tissue expansion and remodelling, referred to as ductular reaction (DR), which is crucial for liver regeneration. However, the molecular mechanisms governing the dynamics of active cells in DR are still largely unclear. Here, we generated Tgm2-knockout mice (Tgm2-/-) and Tgm2-CreERT2-Rosa26-mTmG flox/flox (Tgm2CreERT2-R26T/Gf/f) mice and performed a three-dimensional (3D) collagen gel culture of mouse hepatocytes to demonstrate how Tgm2 signalling is involved in DR to remodel intrahepatic cholangiocytes. Our results showed that the deletion of Tgm2 adversely affected the functionality and maturity of the proliferative cholangiocytes in DR, thus leading to more severe cholestasis during DDC-induced liver injury. Additionally, Tgm2 hepatocytes played a crucial role in the regulation of DR through metaplasia. We unveiled that Tgm2 regulated H3K4me3Q5ser via serotonin to promote BMP signalling activation to participate in DR. Besides, we revealed that the activation or inhibition of BMP signalling could promote or suppress the development and maturation of cholangiocytes in DDC-induced DR. Furthermore, our 3D collagen gel culture assay indicated that Tgm2 was vital for the development of cholangiocytes in vitro. Our results uncovered a considerable role of BMP signalling in controlling metaplasia of Tgm2 hepatocytes in DR and revealed the phenotypic plasticity of mature hepatocytes.

3.
Ultrasound Med Biol ; 50(5): 680-689, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311538

RESUMO

OBJECTIVE: To explore the effect of ultrasound-stimulated microbubble cavitation (USMC) on enhancing antiangiogenic therapy in clear cell renal cell carcinoma. MATERIALS AND METHODS: We explored the effects of USMC with different mechanical indices (MIs) on tumor perfusion, 36 786-O tumor-bearing nude mice were randomly assigned into four groups: (i) control group, (ii) USMC0.25 group (MI = 0.25), (iii) USMC1.4 group (MI = 1.4) (iv) US1.4 group (MI = 1.4). Tumor perfusion was assessed by contrast-enhanced ultrasound (CEUS) before the USMC treatment and 30 min, 4h and 6h after the USMC treatment, respectively. Then we evaluated vascular normalization(VN) induced by low-MI (0.25) USMC treatment, 12 tumor-bearing nude mice were randomly divided into two groups: (i) control group (ii) USMC0.25 group. USMC treatment was performed, and tumor microvascular imaging and blood perfusion were analyzed by MicroFlow imaging (MFI) and CEUS 30 min after each treatment. In combination therapy, a total of 144 tumor-bearing nude mice were randomly assigned to six groups (n = 24): (i) control group, (ii) USMC1.4 group, (iii) USMC0.25 group, (iv) bevacizumab(BEV) group, (v) USMC1.4 +BEV group, (vi) USMC0.25 +BEV group. BEV was injected on the 6th, 10th, 14th, and 18th d after the tumors were inoculated, while USMC treatment was performed 24 h before and after every BEV administration. We examined the effects of the combination therapy through a series of experiments. RESULTS: Tumor blood perfusion enhanced by USMC with low MI (0.25)could last for more than 6h, inducing tumor VN and promoting drug delivery. Compared with other groups, USMC0.25+BEV combination therapy had the strongest inhibition on tumor growth, led to the longest survival time of the mice. CONCLUSION: The optimized USMC is a promising therapeutic approach that can be combined with antiangiogenic therapy to combat tumor progression.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Camundongos , Animais , Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/tratamento farmacológico , Camundongos Nus , Microbolhas , Modelos Animais de Doenças , Perfusão , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/tratamento farmacológico
4.
Int J Biol Macromol ; 260(Pt 2): 129341, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218272

RESUMO

Diabetic retinopathy (DR) is one of the most prevalent severe diabetic microvascular complications caused by hyperglycemia. Deciphering the underlying mechanism of vascular injury and finding ways to alleviate hyperglycemia induced microvascular complications is of great necessity. In this study, we identified that a compound ent-9α-hydroxy-15-oxo-16-kauren-19-oic acid (EKO), the diterpenoid isolated and purified from Pteris semipinnata L., exhibited good protective roles against vascular endothelial injury associated with diabetic retinopathy in vitro and in vivo. To further uncover the underlying mechanism, we used unbiased transcriptome sequencing analysis and showed substantial impairment in the focal adhesion pathway upon high glucose and IL-1ß stimulation. EKO could effectively improve endothelial focal adhesion pathway by enhancing the expression of two focal adhesion proteins Vinculin and ITGA11. We found that c-fos protein was involved in regulating the expression of Vinculin and ITGA11, a transcription factor component that was downregulated by high glucose and IL-1ß stimulation and recovered by EKO. Mechanically, EKO facilitated the binding of deubiquitylation enzyme ATXN3 to c-fos protein and promoted its deubiquitylation, thereby elevating its protein level to enhance the expression of Vinculin and ITGA11. Besides, EKO effectively suppressed ROS production and restored mitochondrial function. In vivo studies, we confirmed EKO could alleviate some of the indicators of diabetic mice. In addition, protein levels of ATXN3 and focal adhesion Vinculin molecule were also verified in vivo. Collectively, our findings addressed the endothelial protective role of natural diterpenoid EKO, with emphasize of mechanism on ATXN3/c-fos/focal adhesion signaling pathway as well as oxygen stress suppression, implicating its therapeutic potential in alleviating vascular endothelium injury and diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Resinas Epóxi , Hiperglicemia , Camundongos , Animais , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Endotélio Vascular , Vinculina , Diabetes Mellitus Experimental/metabolismo , Adesões Focais , Proteínas Proto-Oncogênicas c-fos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Moléculas de Adesão Celular/metabolismo , Glucose/metabolismo
5.
Nutr Metab Cardiovasc Dis ; 34(1): 75-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949716

RESUMO

BACKGROUND AND AIM: Clinical data on the prevalence of metabolic-associated fatty liver disease (MAFLD) in obese and non-obese individuals within a diverse US population is scarce. Furthermore, the influence of physical activity (PA) and dietary quality (DQ) on MAFLD risk remains unclear. This study aims to assess the prevalence and clinical features of MAFLD and examine the relationship between PA and DQ with the risk of developing MAFLD. METHODS AND RESULTS: A cross-sectional analysis of data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES) was conducted. The overall MAFLD prevalence was 41.9%, with 28.6% of participants being obese and 13.4% non-obese. Among those with MAFLD, 67.1% (95% confidence interval (CI): 59.1%-75.1%) were obese, and 32.9% (95% CI: 29.1%-36.7%) were non-obese. Non-obese MAFLD was more frequent in Asians (27.2%), while obese MAFLD was more prevalent in Blacks (66.3%). Metabolic comorbidities were more common in individuals with obese MAFLD, who also exhibited more advanced fibrosis. A high-quality diet (HQD) and increased PA were linked to reduced odds of both obese and non-obese MAFLD (odds ratio (OR) and 95% CI: 0.67 [0.51-0.88] and 0.57 [0.47-0.69]; 0.62 [0.43-0.90] and 0.63 [0.46-0.87], respectively). PA and HQD significantly decreased the risk of obese and non-obese MAFLD (OR and 95% CI: 0.46 [0.33-0.64] and 0.42 [0.31-0.57]). CONCLUSION: A substantial proportion of the US population is affected by both obese and non-obese MAFLD. A strong association exists between a lower risk of both types of MAFLD and adherence to an HQD and engagement in PA.


Assuntos
Dieta , Hepatopatia Gordurosa não Alcoólica , Humanos , Inquéritos Nutricionais , Estudos Transversais , Dieta/efeitos adversos , Obesidade/diagnóstico , Obesidade/epidemiologia , Exercício Físico , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia
6.
Eur Radiol ; 34(3): 1481-1492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37796294

RESUMO

OBJECTIVES: Sonochemotherapy, which uses microbubble (MB)-assisted ultrasound (US) to deliver chemotherapeutic agents, has the potential to enhance tumour chemotherapy. The combination of US and MB has been demonstrated to prolong the survival of patients with pancreatic cancer. This phase 2 clinical trial aimed to determine the clinical efficacy and safety of sonochemotherapy for inoperable pancreatic ductal adenocarcinoma by using US and MB. METHODS: Eighty-two patients with stage III or IV pancreatic cancer were recruited from July 2018 to March 2021 and followed up until September 2022. US treatment was performed with a modified diagnostic US scanner for 30 min after chemotherapeutic infusion. The primary endpoint was overall survival (OS), and the secondary endpoints were Eastern Cooperative Oncology Group (ECOG) status < 2, progression-free survival (PFS), disease control rate (DCR), and adverse events. RESULTS: Seventy-eight patients were randomly allocated (40 to chemotherapy and 38 to sonochemotherapy). The median OS was longer with sonochemotherapy than with chemotherapy (9.10 vs. 6.10 months; p = 0.037). The median PFS with sonochemotherapy was 5.50 months, compared with 3.50 months (p = 0.080) for chemotherapy. The time of ECOG status < 2 was longer with sonochemotherapy (7.20 months) than with chemotherapy (5.00 months; p = 0.029). The DCR was 73.68% for sonochemotherapy compared with 42.50% for the control (p = 0.005). The incidence of overall adverse events was balanced between the two groups. CONCLUSIONS: The use of sonochemotherapy can extend the survival and well-being time of stage III or IV pancreatic cancer patients without any increase in serious adverse events. TRIAL REGISTRATION: ChineseClinicalTrials.gov ChiCTR2100044721 CLINICAL RELEVANCE STATEMENT: This multicentre, randomised, controlled trial has proven that sonochemotherapy, namely, the combination of diagnostic ultrasound, microbubbles, and chemotherapy, could extend the overall survival of patients with end-stage pancreatic ductal adenocarcinoma from 6.10 to 9.10 months without increasing any serious adverse events. KEY POINTS: • This is the first multicentre, randomised, controlled trial of sonochemotherapy for clinical pancreatic cancer treatment using ultrasound and a commercial ultrasound contrast agent. • Sonochemotherapy extended the median overall survival from 6.10 (chemotherapy alone) to 9.10 months. • The disease control rate increased from 42.50% with chemotherapy to 73.68% with sonochemotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microbolhas , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Resultado do Tratamento , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/terapia , Ultrassonografia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
7.
J Ultrasound Med ; 43(2): 253-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853950

RESUMO

OBJECTIVES: To investigate the appropriate combination of pulse length (PL) and pulse repetition frequency (PRF) when performing ultrasound stimulated microbubble (USMB) to enhance doxorubicin (DOX) delivery to tumors. METHODS: A total of 48 tumor-bearing mice were divided into four groups, namely groups A-D. The mice in groups B-D were treated with chemotherapy and USMB treatment with different combinations of PL and PRF, and group A was control. Contrast-enhanced ultrasound imaging was conducted to analyze tumor blood perfusion. Fluorescence microscopy and high-performance liquid chromatography were used to qualitatively and quantitatively analyse DOX release. The structural changes of tumors were observed under light microscope and transmission electron microscope. Furthermore, another 24 tumor-bearing mice were treated with sonochemotherapy and some related inflammatory factors were measured to explore the underlying mechanism. RESULTS: With PL of three cycles and PRF of 2 kHz, the tumor perfusion area ratio increased by 26.67%, and the DOX concentration was 4.69 times higher than the control (P < .001). With PL of 34.5 cycles and PRF of 200 Hz, the tumor perfusion area ratio decreased by 12.7% and DOX did not exhibit increased extravasation compared with the control. Microvascular rupture and hemorrhage were observed after long PL and low PRF treatment. While vasodilation and higher levels of some vasodilator inflammatory factors were found after treatment with short PL and high PRF. CONCLUSIONS: USMB treatment using short PL and high PRF could enhance tumor blood perfusion and increase DOX delivery, whereas long PL and low PRF could not serve the same purpose.


Assuntos
Doxorrubicina , Neoplasias , Camundongos , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ultrassonografia/métodos , Perfusão , Microbolhas
8.
Biosens Bioelectron ; 246: 115895, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38048720

RESUMO

Combined photothermal therapy and nitric oxide (NO)-mediated gas therapy has shown great potential as a cancer treatment. However, the on-demand release of NO at a high concentration presents a challenge owing to the lack of an ideal bio-transducer with a high loading capacity of NO donors and sufficient energy to induce NO release. Here, we present a new 2D BiTiS3 nanosheet that is synthesized, loaded with the NO donor (BNN6), and conjugated with PEG-iRGD to produce a multifunctional bio-transducer (BNN6-BiTiS3-iRGD) for the on-demand production of NO. The BiTiS3 nanosheets not only have a high loading capacity of NO donors (750%), but also exhibit a high photothermal conversion efficiency (59.5%) after irradiation by a 1064-nm laser at 0.5 W/cm2. As a result of the above advantages, the temporal-controllable generation of NO within a large dynamic range (from 0 to 344 µM) is achieved by adjusting power densities, which is among the highest efficiency values reported for NO generators so far. Moreover, the targeted accumulation of BNN6-BiTiS3-iRGD at tumor sites leads to spatial-controllable NO release. In vitro and in vivo assessments demonstrate synergistic NO gas therapy with mild photothermal therapy based on BNN6-BiTiS3-iRGD. Our work provides insights into the design and application of other 2D nanomaterial-based therapeutic platforms.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Neoplasias , Animais , Óxido Nítrico , Bitis , Luz , Fototerapia , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/patologia
9.
Hematology ; 29(1): 2288481, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108336

RESUMO

The interaction between Tim-3 on T cells and its ligand Galectin-9 negatively regulates the cellular immune response. However, the regulation of Tim-3/Galectin-9 on CD4 T cell subsets in multiple myeloma (MM) remains unclear. The aim of this study was to investigate the relationship between the regulation of CD4 T cell subsets by the Tim-3/Galectin-9 pathway and clinical prognostic indicators in MM. Tim-3/Galectin-9 were detected by flow cytometry, PCR and ELISA in 60 MM patients and 40 healthy controls, and its correlation with clinical prognostic parameters was analyzed. The expressions of Tim-3 on CD4 T cells, Galectin-9 mRNA in PBMC and level of Galectin-9 protein in serum were significantly elevated in MM patients, especially those with poor prognostic indicators. In MM patients, Tim-3 was highly expressed on the surfaces of Th1, Th2, and Th17 cells, but lowly expressed on Treg. Moreover, level of cytokine IFN-γ in serum was negatively correlated with Tim-3+Th1 cell and Galectin-9mRNA, Galectin-9 protein level. In addition, cell culture experiments showed that the anti-tumor effect and the ability to secrete IFN-γ were restored by blocking the Tim-3/Galectin-9 pathway. In MM patients, Tim-3/Galectin-9 is elevated and associated with disease progression, by inhibiting the cytotoxic function of Th1, and also promoting Th2 and Th17 to be involved in immune escape of MM. Therefore, Tim-3/Galectin-9 may serve as a new immunotherapeutic target for MM patients.


Assuntos
Linfócitos T CD4-Positivos , Galectinas , Receptor Celular 2 do Vírus da Hepatite A , Mieloma Múltiplo , Humanos , Galectinas/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Leucócitos Mononucleares , Mieloma Múltiplo/genética
10.
Adv Sci (Weinh) ; 11(3): e2305762, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38115673

RESUMO

The photothermal performance of black phosphorus (BP) in the near infrared (NIR)-II bio-window (1000-1500 nm) is low, which limits its biomedical applications. Herein, ultrasmall nickel phosphide quantum dots (Ni2 P QDs) are synthesized with BP quantum dots (BPQDs) as the template by topochemical transformation. The size of Ni2 P QDs is ≈3.5 nm, similar to that of BPQDs, whereas the absorption and photothermal conversion efficiency of Ni2 P QDs at 1064 nm (43.5%) are significantly improved compared with those of BPQDs. To facilitate in vivo applications, an Ni2 P QDs-based liposomal nano-platform (Ni2 P-DOX@Lipo-cRGD) is designed by incorporation of Ni2 P QDs and doxorubicin (DOX) into liposomal bilayers and the interior, respectively. The encapsulated DOX is responsively released from liposomes upon 1064-nm laser irradiation owing to the photothermal effect of Ni2 P QDs, and the drug release rate and amount are controlled by the light intensity and exposure time. In vivo, experiments show that Ni2 P-DOX@Lipo-cRGD has excellent tumor target capability and biocompatibility, as well as complete tumor ablation through the combination of photothermal therapy and chemotherapy. The work provides a new paradigm for the NIR-II transformation of nano-materials and may shed light on the construction of multifunctional nano-platforms for cancer treatment.


Assuntos
Neoplasias , Pontos Quânticos , Humanos , Fototerapia , Fósforo , Doxorrubicina , Lipossomos , Neoplasias/tratamento farmacológico
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(6): 1764-1770, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38071058

RESUMO

OBJECTIVE: To investigate the significance of Tim-3 and Galectin-9 in Th1/Th2 imbalance in patients with multiple myeloma (MM). METHODS: 55 newly diagnosed MM patients and 20 healthy controls were included. Flow cytometry was used to detect the expression of Tim-3 on CD4+T cells, the proportion of Th1, Th2, Tim-3+Th1 and Tim-3+Th2 cells in peripheral blood. ELISA was used to detect the levels of cytokines IFN-γ and IL-4 in serum, and PCR was used to detect the level of Galectin-9 mRNA. Then the correlations between Galectin-9 mRNA expression and Th-cell subsets and related cytokine levels, as well as the relationship between Tim-3+Th1/Tim-3+Th2 ratio and corresponding clinical features were analyzed. RESULTS: Compared with the control group, the expression of Tim-3 on CD4+T cells in peripheral blood of MM patients was significantly increased (P<0.05), the proportions of Tim-3+Th1 cells, Tim-3+Th2 cells and Tim-3+Th1/Tim-3+Th2 ratio in MM patients were also increased (P<0.05), while the proportion of Th1 cells and Th1/Th2 ratio in MM patients were significantly decreased (P<0.05). The level of cytokine IFN-γ and IFN-γ/IL-4 ratio in MM patients were significantly decreased (P<0.05), while the level of cytokine IL-4 was increased (P<0.05). The mRNA levels of Galectin-9 in MM patients were significantly increased (P<0.05). The levels of Galectin-9 mRNA were positively correlated with Tim-3+CD4+T cells (r=0.663), Tim-3+Th2 cells (r=0.492) and IL-4 (r=0.470), while negatively correlated with IFN-γ (r=-0.593). The ratios of Tim-3+Th1/Tim-3+Th2 in MM patients were positively correlated with ISS stage (r=0.511), osteolytic damage (r=0.556) and chromosome abnormality (r=0.632). CONCLUSION: These results suggest that Tim-3 and Galectin-9 are involved in Th1/Th2 imbalance in MM patients, and the high ratio of Tim-3+Th1/Tim-3+Th2 is associated with poor clinical prognosis.


Assuntos
Galectinas , Receptor Celular 2 do Vírus da Hepatite A , Mieloma Múltiplo , Humanos , Citocinas/metabolismo , Galectinas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interleucina-4/metabolismo , Ligantes , Mieloma Múltiplo/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo
12.
Ultrason Sonochem ; 100: 106619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757603

RESUMO

Tumor hypoperfusion not only impedes therapeutic drug delivery and accumulation, but also leads to a hypoxic and acidic tumor microenvironment, resulting in tumor proliferation, invasion, and therapeutic resistance. Sononeoperfusion effect refers to tumor perfusion enhancement using ultrasound and microbubbles. This study aimed to further investigate hypoxia alleviation by sononeoperfusion effect and explore the characteristics and mechanism of sononeoperfusion effect. To stimulate the sononeoperfusion effect, mice bearing MC38 colon cancers were included in this study and diagnostic ultrasound for therapy was set at a mechanical index (MI) of 0.1, 0.3, and 0.5, frequency of 3 MHz, pulse length of 5 cycles, and pulse repetition frequency of 2000 Hz. The results demonstrated that a single ultrasound and microbubble (USMB) treatment resulted in tumor perfusion enhancement at MI = 0.3, and nitric oxide (NO) concentration increased at MI = 0.3/0.5 (P < 0.05). However, there were no significant difference in the hypoxia-inducible factor-1α (HIF-1α) or D-lactate (D-LA) (P > 0.05) levels. Multiple sononeoperfusion effects were observed at MI = 0.3/0.5 (P < 0.05). For each treatment, USMB slightly but steadily improved the tumor tissue oxygen partial pressure (pO2) during and post treatment. It alleviated tumor hypoxia by decreasing HIF-1α, D-LA level and the hypoxic immunofluorescence intensity at MI = 0.3/0.5 (P < 0.05). The sononeoperfusion effect was not stimulated after eNOS inhibition. In conclusion, USMB with appropriate MI could lead to a sononeoperfusion effect via NO release, resulting in hypoxia amelioration. The tumors were not resistant to multiple sononeoperfusion effects. Repeated sononeoperfusion is a promising approach for relieving tumor hypoxia and resistance to therapy.


Assuntos
Microbolhas , Neoplasias , Camundongos , Animais , Óxido Nítrico , Neoplasias/tratamento farmacológico , Hipóxia/terapia , Ultrassonografia , Subunidade alfa do Fator 1 Induzível por Hipóxia/uso terapêutico , Microambiente Tumoral
13.
Infect Dis Ther ; 12(8): 2071-2086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470925

RESUMO

INTRODUCTION: Since hematopoietic stem cell transplant (HSCT) is an important therapy for malignant and non-malignant pediatric diseases, improving transplant-related mortality remains a challenge. Currently, rituximab, a monoclonal antibody of anti-CD20, is widely used for several post-HSCT complications. However, few studies have focused on the application of rituximab before HSCT. METHODS: We conducted a retrospective case-control study from January 2019 to July 2021 to determine this effect in a single center. Forty-eight patients were included in the rituximab group, with a one-to-one ratio matched to the control group. RESULTS: Both the occurrence rate and cumulative incidence rate of Epstein-Barr virus (EBV) infection were significantly lower in the rituximab group than in the without-rituximab group (10.4% vs. 33.3%, p = 0.014 and 12.2% vs. 39.3% p = 0.0026, respectively). Furthermore, without the application of rituximab was identified as a risk factor for post-HSCT EBV infection via both univariate [hazard ratio (HR) = 4.17, 95%CI (1.52-11.43), p = 0.005] and multivariate analyses [HR = 4.65, 95%CI (1.66-13.0), p = 0.003]. Although the overall survival (OS) probability of the rituximab group was comparable to the without-rituximab group, a markedly improved OS of the rituximab group was found in the malignant disease subgroup (78.9% vs. 42.1%, p = 0.032). The outcomes of graft-versus-host disease, neutrophil and platelet engraftment, other viral infections, and the reconstitution of lymphocytes showed no significant differences between the two groups. CONCLUSIONS: The administration of rituximab before HSCT may prevent EBV infection following HSCT.

14.
ACS Nano ; 17(14): 13211-13223, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440429

RESUMO

Starvation therapy has been considered a promising strategy in cancer treatment for altering the tumor microenvironment (TME) and causing a cascade of therapeutic effects. However, it is still highly challenging to establish a therapeutic strategy for precisely and potently depriving tumoral nutrition. In this study, a glucose oxidase (GOx) and thrombin-incorporated erythrocyte vesicle (EV) with cyclic (Arg-Gly-Asp) (cRGD) peptide modification, denoted as EV@RGT, were synthesized for precisely depriving tumoral nutrition and sequentially inducing second near-infrared region (NIR-II) photothermal therapy (PTT) and immune activation. The EV@RGT could specifically accumulate at the tumor site and release the enzymes at the acidic TME. The combination of GOx and thrombin exhausts tumoral glucose and blocks the nutrition supply at the same time, resulting in severe energy deficiency and reactive oxygen species (ROS) enrichment within tumor cells. Subsequently, the abundant clotted erythrocytes in tumor vessels present outstanding localized NIR-II PTT for cancer eradication owing to the hemoglobin. Furthermore, the abundant ROS generated by enhanced starvation therapy repolarizes resident macrophages into the antitumor M1 phenotype via a DNA damage-induced STING/NF-κB pathway, ultimately contributing to tumor elimination. Consequently, the engineered EV@RGT demonstrates powerful antitumor efficiency based on precise nutrition deprivation, sequential NIR-II PTT, and immune activation effect. This work provides an effective strategy for the antitumor application of enzyme-based reinforced starvation therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Espécies Reativas de Oxigênio , Trombina , Nutrientes , Eritrócitos , Glucose Oxidase , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
J Nanobiotechnology ; 21(1): 224, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443019

RESUMO

As a common tumor with high incidence, osteosarcoma possesses extremely poor prognosis and high mortality. Improving the survival of osteosarcoma patients is still a great challenge due to the precipice of advancement in treatment. In this study, a combination strategy of gene therapy and photothermal therapy (PTT) is developed for efficient treatment of osteosarcoma. Two-dimensional (2D) FePS3 nanosheets are synthesized and functionalized by poly-L-lysine-PEG-folic acid (PPF) to fabricate a multifunctional nanoplatform (FePS@PPF) for further loading microRNAs inhibitor, miR-19a inhibitor (anti-miR-19a). The photothermal conversion efficiency of FePS@PPF is up to 47.1% under irradiation by 1064 nm laser. In vitro study shows that anti-miR-19a can be efficiently internalized into osteosarcoma cells through the protection and delivery of FePS@PPF nanaocarrier, which induces up-regulation of PTEN protein and down-regulation p-AKT protein. After intravenous injection, the FePS@PPF nanoplatform specifically accumulates to tumor site of osteosarcoma-bearing mice. The in vitro and in vivo investigations reveal that the combined PTT-gene therapy displays most significant tumor ablation compared with monotherapy. More importantly, the good biodegradability promotes FePS@PPF to be cleared from body avoiding potential toxicity of long-term retention. Our work not only develops a combined strategy of NIR-II PTT and gene therapy mediated by anti-miR-19a/FePS@PPF but also provides insights into the design and applications of other nanotherapeutic platforms.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Animais , Camundongos , Terapia Fototérmica , Antagomirs , Fototerapia/métodos , Osteossarcoma/terapia , Neoplasias/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral
16.
Hepatol Commun ; 7(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314767

RESUMO

BACKGROUND: HCC characterizes malignant metastasis with high incidence and recurrence. Thus, it is pivotal to discover the mechanisms of HCC metastasis. TATA-box-binding protein (TBP), a general transcriptional factor (TF), couples with activators and chromatin remodelers to sustain the transcriptional activity of target genes. Here, we investigate the key role of TBP in HCC metastasis. METHODS: TBP expression was measured by PCR, western blot, and immunohistochemistry. RNA-sequencing was performed to identify downstream proteins. Functional assays of TBP and downstream targets were identified in HCC cell lines and xenograft models. Luciferase reporter and chromatin immunoprecipitation assays were used to demonstrate the mechanism mediated by TBP. RESULTS: HCC patients showed high expression of TBP, which correlated with poor prognosis. Upregulation of TBP increased HCC metastasis in vivo and in vitro, and muscleblind-like-3 (MBNL3) was the effective factor of TBP, positively related to TBP expression. Mechanically, TBP transactivated and enhanced MBNL3 expression to stimulate exon inclusion of lncRNA-paxillin (PXN)-alternative splicing (AS1) and, thus, activated epithelial-mesenchymal transition for HCC progression through upregulation of PXN. CONCLUSIONS: Our data revealed that TBP upregulation is an HCC enhancer mechanism that increases PXN expression to drive epithelial-mesenchymal transition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína de Ligação a TATA-Box , Humanos , Bioensaio , Carcinoma Hepatocelular/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Hepáticas/genética , Proteínas de Ligação a RNA/genética , Proteína de Ligação a TATA-Box/genética , Animais
17.
Front Cell Infect Microbiol ; 13: 1142199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153160

RESUMO

Background: Multinational studies have reported that the implementation of nonpharmaceutical interventions (NPIs) to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission coincided with the decline of other respiratory viruses, such as influenza viruses and respiratory syncytial virus. Objective: To investigate the prevalence of common respiratory viruses during the coronavirus disease 2019 (COVID-19) pandemic. Methods: Respiratory specimens of children with lower respiratory tract infections (LRTIs) hospitalized at the Children's Hospital of Chongqing Medical University from January 1, 2018 to December 31, 2021 were collected. Seven common pathogens, including respiratory syncytial virus (RSV), adenovirus (ADV), influenza virus A and B (Flu A, Flu B), and parainfluenza virus types 1-3 (PIV1-3), were detected by a multiplex direct immunofluorescence assay (DFA). Demographic data and laboratory test results were analyzed. Results: 1) A total of 31,113 children with LRTIs were enrolled, including 8141 in 2018, 8681 in 2019, 6252 in 2020, and 8059 in 2021.The overall detection rates decreased in 2020 and 2021 (P < 0.001). The detection rates of RSV, ADV, Flu A, PIV-1, and PIV-3 decreased when NPIs were active from February to August 2020, with Flu A decreasing most predominantly, from 2.7% to 0.3% (P < 0.05). The detection rates of RSV and PIV-1 resurged and even surpassed the historical level of 2018-2019, while Flu A continued decreasing when NPIs were lifted (P < 0.05). 2) Seasonal patterns of Flu A completely disappeared in 2020 and 2021. The Flu B epidemic was observed until October 2021 after a long period of low detection in 2020. RSV decreased sharply after January 2020 and stayed in a nearly dormant state during the next seven months. Nevertheless, the detection rates of RSV were abnormally higher than 10% in the summer of 2021. PIV-3 decreased significantly after the COVID-19 pandemic; however, it atypically surged from August to November 2020. Conclusion: The NPIs implemented during the COVID-19 pandemic affected the prevalence and seasonal patterns of certain viruses such as RSV, PIV-3, and influenza viruses. We recommend continuous surveillance of the epidemiological and evolutionary dynamics of multiple respiratory pathogens, especially when NPIs are no longer necessary.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Criança , Humanos , Lactente , Pandemias , Criança Hospitalizada , COVID-19/epidemiologia , SARS-CoV-2 , Infecções Respiratórias/epidemiologia , China/epidemiologia , Influenza Humana/epidemiologia
18.
Front Immunol ; 14: 1152951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205108

RESUMO

Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.


Assuntos
Infecções por HIV , HIV , Humanos , Contagem de Linfócito CD4 , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Linfócitos T CD4-Positivos
19.
Plant Dis ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142964

RESUMO

Taxus chinensis var. mairei is the endemic, endangered, and first-class protected tree species in China. This species is considered as an important resource plant because it can produce Taxol which is an effective medicinal compound against various cancers (Zhang et al., 2010). Stem blight was observed in two plant nurseries in Ya'an (102°44'E,30°42'N), Sichuan province in April 2021. The symptoms first appeared as round brown spots on the stem. As the disease progressed, the damaged area gradually expanded into an oval or irregular shape, which was dark brown. About 800 square meters of planting area were investigated and the disease incidence was up to approximately 64.8%. Twenty obviously symptomatic stems which exhibited the same symptoms as above were collected from 5 different trees in the nursery. To isolate the pathogen, the symptom margin was cut into small blocks (5 x 5 mm), and the blocks were surface sterilized in 75% ethanol for 90 s and 3% NaClO solution for 60 s . Finally incubated on Potato Dextrose Agar (PDA) at 28℃ for 5 days. Ten pure cultures were isolated by transferring hyphal and the three strains (HDS06, HDS07 and HDS08) were selected as representative isolates for further study. Initially, colonies on the PDA of three isolates were white and cotton-like, and then gradually turned gray-black from the center. After 21 days, conidia were produced and were smooth-walled, single-celled, black, oblate, or spherical, measuring 9.3 to 13.6 × 10.1 to 14.5 µm in size (n = 50). Conidia were present at the tip of conidiophores on hyaline vesicles. These morphological features were generally consistent with those of N. musae (Wang et al., 2017). To validate the identification, DNA were extracted from the three isolates, followed by the amplification of transcribed spacer region of rDNA (ITS), the translation elongation factor EF-1 (TEF-1), and the Beta-tubulin (TUB2) sequences with the respective primer pairs ITS1/ITS4 (White et al., 1990), EF-728F/EF-986R (Vieira et al., 2014) and Bt2a/Bt2b (O'Donnell et al., 1997) .The sequences were deposited in GenBank with the accession numbers ON965533, OP028064, OP028068, OP060349, OP060353, OP060354, OP060350, OP060351 and OP060352, respectively. Phylogenetic analysis of combined ITS, TUB2, and TEF genes using the Mrbayes inference method showed that the three isolates clustered with Nigrospora musae as a distinct clade (Fig. 2). Combine with morphological characteristics and phylogenetic analysis, three isolates were identified as N. musae. 30 2-year-old healthy potted plants of T. chinensis were used for pathogenicity test. 25 of these plants were inoculated by injecting 10 µL of the conidia suspension (1 × 106 conidia/mL) into stems and then wrap around the seal to moisturize. The remaining 5 plants were injected with the same amount of sterilized distilled water as a control. Finally, all potted plants were placed in a greenhouse at 25°C and 80% relative humidity. After 2 weeks, the inoculated stems developed lesions similar to those observed in the field, whereas controls were asymptomatic. N. musae was re-isolated from the infected stem and identified by both morphological characteristics and DNA sequence analysis. The experiments repeated three times showed similar results. As far as we know, this is the first report of N. musae causing T. chinensis stem blight in the world. The identification of N. musae could provide a certain theoretical basis for field management and further research of T. chinensis.

20.
Liver Int ; 43(9): 1920-1936, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183512

RESUMO

BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) consists of a broad spectrum of conditions, and nonalcoholic steatohepatitis (NASH) is the advanced form of NAFLD. TAF15 is a DNA and RNA binding protein and is involved in crucial inflammatory signalling pathways. We aimed to investigate the role of TAF15 in the progression of NASH and the underlying molecular mechanism. METHODS: We generated mice with hepatocyte-specific knockdown and overexpression of TAF15 using a specific adeno-associated virus (AAV). NASH models were established by feeding mice high-fat and high-cholesterol diets and methionine- and choline-deficient diets. Cleavage under targets and tagmentation and dual-luciferase reporter assays were performed to investigate the effect of TAF15 on FASN transcription. Coimmunoprecipitation and immunofluorescence assays were conducted to explore the interaction of TAF15 and p65. In vitro coculture systems were established to study the interactions of hepatocytes, macrophages and HSCs. RESULTS: TAF15 was significantly increased in the livers of mouse NASH models and primary hepatocyte NASH model. Knockdown of TAF15 inhibited steatosis, inflammation and fibrosis, while overexpression of TAF15 promoted NASH phenotypes. Mechanistically, TAF15 bound directly to the promoter region of FASN to facilitate its expression, thereby promoting steatosis. Moreover, TAF15 interacted with p65 and activated the NF-κB signalling pathway, increasing the secretion of proinflammatory cytokines and triggering M1 macrophage polarization. Treatment with the FASN inhibitor orlistat partially reversed the phenotypes. CONCLUSIONS: These results suggested that TAF15 exacerbated NASH progression by regulating lipid metabolism and inflammation via transcriptional activation of FASN and interacting with p65 to activate the NF-κB signalling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fatores Associados à Proteína de Ligação a TATA , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , NF-kappa B/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fatores Associados à Proteína de Ligação a TATA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA