Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 120012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171127

RESUMO

Soil microbes are fundamental to ecosystem health and productivity. How soil microbial communities are influenced by elevated atmospheric carbon dioxide (eCO2) concentration and nitrogen (N) deposition under heavy metal pollution remains uncertain, despite global exposure of terrestrial ecosystems to eCO2, high N deposition and heavy metal stress. Here, we conducted a four year's open-top chamber experiment to assess the effects of soil cadmium (Cd) treatment (10 kg hm-2 year-1) alone and combined treatments of Cd with eCO2 concentration (700 ppm) and/or N addition (100 kg hm-2 year-1) on tree growth and rhizosphere microbial community. Relative to Cd treatment alone, eCO2 concentration in Cd contaminated soil increased the complexity of microbial networks, including the number links, average degree and positive/negative ratios. The combined effect of eCO2 and N addition in Cd contaminated soil not only increased the complexity of microbial networks, but also enhanced the abundance of microbial urealysis related UreC and nitrifying related amoA1 and amoA2, and the richness of arbuscular mycorrhiza fungi (AMF), thereby improving the symbiotic functions between microorganisms and plants. Results from correlation analysis and structural equation model (SEM) further demonstrated that eCO2 concentration and N addition acted on functions and networks differently. Elevated CO2 positively regulated microbial networks and functions through phosphorus (P) and Cd concentration in roots, while N addition affected microbial functions through soil available N and soil organic carbon (SOC) concentration and microbial network through soil Cd concentration. Overall, our findings highlight that eCO2 concentration and N addition make microbial communities towards ecosystem health that may mitigate Cd stress, and provide new insights into the microbiology supporting phytoremediation for Cd contaminated sites in current and future global change scenarios.


Assuntos
Metais Pesados , Microbiota , Rizosfera , Cádmio/química , Simbiose , Dióxido de Carbono/análise , Nitrogênio/análise , Carbono , Microbiologia do Solo , Solo/química , Metais Pesados/análise
2.
Sci Total Environ ; 837: 155858, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561921

RESUMO

Plant growth, photosynthesis, and hydraulics are affected by heavy metals but also by elevated atmospheric CO2 concentration (e[CO2]) and nitrogen (N) deposition. However, few studies have investigated the response of woody species to the combined effects of these three factors. We conducted an open-top chamber experiment with two common subtropical trees (Acacia auriculiformis and Syzygium hainanense) to explore the effects of cadmium (Cd)-contamination, e[CO2], and N addition on plant eco-physiological traits. We found that the growth of A. auriculiformis was insensitive to the treatments, indicating that it is a Cd-tolerant and useful afforestation species. For S. hainanense, in contrast, e[CO2] and/or N addition offset the detrimental effects of Cd addition by greatly increasing plant biomass and reducing the leaf Cd concentration. We then found that e[CO2] and/or N addition offset the detrimental Cd effects on S. hainanense biomass by increasing its photosynthetic rate, its N concentration, and the efficiency of its stem water transport network. These offsetting effects of e[CO2] and/or N addition, however, came at the expense of reduced xylem hydraulic safety resulting from wider vessels, thinner vessel walls, and therefore weaker vessel reinforcement. Our study suggests that, given future increases in global CO2 concentration and N deposition, the growth of Cd-tolerant tree species (like A. auriculiformis) will be probably stable while the growth of Cd-sensitive tree species (like S. hainanense) might be enhanced despite reduced hydraulic safety. This also suggests that both species will be useful for afforestation of Cd-contaminated soils given future global change scenarios.


Assuntos
Cádmio , Árvores , Cádmio/toxicidade , Dióxido de Carbono/toxicidade , Nitrogênio , Fotossíntese , Folhas de Planta
3.
Sci Total Environ ; 696: 133968, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31470332

RESUMO

The mineralization of soil organic carbon (SOC) is primarily mediated by carbon (C) degrading enzyme. In the current study, we determined how the activities of four soil C-degrading enzymes, the hydrolases ß-glucosidase (BG) and cellobiohydrolase (CBH) and the oxidases polyphenol oxidase (PPO) and peroxidase (POD), responded to forest conversion of natural broadleaf forests (BF) to secondary forests (SF) and plantation forests (PF) in subtropical China. We also quantified SOC, dissolved organic C (DOC), permanganate oxidase organic C (PXC), recalcitrant C (RC), microbial biomass C (MBC), mineral-associated C (MOC), soil particle-sizes distribution, pH, and moisture content, and C: nitrogen (N) ratio. Results showed that, the activities of all four C-degrading enzymes (BG, CBH, PPO and POD) decreased by 23.1, 9.5, 6.9 and 1.8%, respectively by forest conversion of BF to SF and 30.5, 15.3, 28.1 and 27.8%, respectively by conversion of BF to PF and were higher in the topsoil than in the subsoil. Relative to SF and PF, BF had higher hydrolase activities, which were related to its higher concentrations of MBC, DOC, and PXC, and to its lower C:N ratio. The BF also had higher oxidase activities, which were related to its higher concentrations of MBC, RC, and MOC, and to its lower C:N ratio. PF had higher specific enzyme activities (i.e., enzyme activities per unit of SOC) than BF and SF, indicating faster C turnover rates in PF. In addition to being affected by the concentrations of SOC and SOC components, forest conversion-induced changes in soil enzyme activities were affected by clay content and soil moisture content. These results revealed the different underlying mechanisms between soil hydrolases and oxidases in their responses to forest conversion.


Assuntos
Monitoramento Ambiental , Florestas , Microbiologia do Solo , Carbono/análise , China , Solo/química
4.
Sci Total Environ ; 671: 157-164, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30928745

RESUMO

Rising atmospheric CO2 concentration and nitrogen (N) deposition are changing terrestrial carbon (C) cycle; however, little has been known about such impacts in a heavy-metal-contaminated environment. This study conducted an open-top chamber experiment to explore the impacts of rising atmospheric CO2 concentration and N deposition on the leaf litter and soil C cycle in cadmium (Cd)-contaminated environment. The experiment include five treatments: control, Cd (30 g ha-1 yr-1) addition, Cd addition under elevated CO2 (700 ppm CO2), Cd and N(100 kg ha-1 yr-1) additions, and Cd and N additions under elevated CO2, with three replicates per treatment. Leaf litter and soil C cycle were indexed by microbial biomass C concentration and the activities of four key C-degrading enzyme (ß-glucosidase (BG), cellobiohydrolase (CBH), polyphenol oxidase (PPO), and peroxidase (POD)) in litter and soil. Results showed that, after one year treatment, Cd addition negatively affected the activities of all four C-degrading enzyme in litter and soil; while elevated CO2 and N addition essentially alleviated these negative effects. Elevated CO2 and N addition increased C-degrading enzyme activities more of the non-legume (i.e., Cinnamomum camphora) litter than those of the legume (i.e., Acacia auriculiformis) litter. Elevated CO2, N addition, and Cd addition all affected C-degrading enzyme activities via their effects on the microbial biomass C concentration and C and N availability of the litter and soil samples. We suggest that rising atmospheric CO2 concentration and N deposition can offset the detrimental effect of Cd on the litter and soil C-degrading enzyme activities in forest ecosystems.


Assuntos
Poluentes Atmosféricos/análise , Cádmio/análise , Dióxido de Carbono/análise , Nitrogênio/análise , Folhas de Planta/química , Microbiologia do Solo , Poluentes do Solo/análise , China , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA