Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Interv Aging ; 19: 807-815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751857

RESUMO

Objective: To explore the suitable population of CT value for predicting low bone mineral density (low-BMD). Methods: A total of 1268 patients who underwent chest CT examination and DXA within one-month period retrospectively analyzed. The CT attenuation values of trabecular bone were measured in mid-sagittal plane from thoracic vertebra 7 (T7). Receiver operating characteristic (ROC) curves were used to evaluate the ability to diagnose low-BMD. Results: The AUC for diagnosing low BMD was larger in women than in men (0.894 vs 0.744, p < 0.05). The AUC increased gradually with the increase of age but decreased gradually with the increase in height and weight (p < 0.05). In females, when specificity was adjusted to approximately 90%, a threshold of 140.25 HU has a sensitivity of 69.3%, which is higher than the sensitivity of 36.5% in males for distinguishing low-BMD from normal. At the age of 70 or more, when specificity was adjusted to approximately 90%, a threshold of 126.31 HU has a sensitivity of 76.1%, which was higher than that of other age groups. Conclusion: For patients who had completed chest CTs, the CT values were more effective in predicting low-BMD in female, elderly, lower height, and lower weight patients.


Assuntos
Densidade Óssea , Curva ROC , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Absorciometria de Fóton , Idoso de 80 Anos ou mais , Osteoporose/diagnóstico por imagem , Sensibilidade e Especificidade , Fatores Etários , Programas de Rastreamento/métodos , Estatura
2.
Gene ; 898: 148110, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38151177

RESUMO

The treatment of osteosarcoma patients exhibits individual variability, underscoring the critical importance of targeted therapy. Although (Solute carrier family 35 member A2) SLC35A2's role in the progression of various cancers has been extensively investigated, its specific implications in osteosarcoma remain unexplored. Leveraging data from the (The Cancer Genome Atlas) TCGA and (Genotype-Tissue Expression) GTEx databases, we have discerned that SLC35A2 is notably upregulated in osteosarcoma and correlates with the prognosis of osteosarcoma patients. Consequently, it becomes imperative to delve into the role of SLC35A2 in the context of osteosarcoma. Our research substantiates that SLC35A2 exerts a notable influence on mitochondrial autophagy in osteosarcoma, thereby exerting cascading effects on the proliferation, migration, invasion, and apoptosis of osteosarcoma cells. Mechanistically, SLC35A2 orchestrates mitochondrial autophagy via the PI3K/AKT/mTOR signaling pathway. Moreover, we have conducted rigorous animal experiments to further corroborate the repercussions of SLC35A2 on osteosarcoma growth. In summation, our study elucidates that SLC35A2's modulation of mitochondrial autophagy through the PI3K/AKT/mTOR signaling pathway constitutes a pivotal factor in the malignant progression of osteosarcoma, unveiling promising therapeutic targets for patients grappling with this condition.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Mitofagia , Proliferação de Células/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/metabolismo , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral
3.
Front Oncol ; 13: 1095353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152013

RESUMO

Objective: To develop an accurate and automatic segmentation model based on convolution neural network to segment the prostate and its lesion regions. Methods: Of all 180 subjects, 122 healthy individuals and 58 patients with prostate cancer were included. For each subject, all slices of the prostate were comprised in the DWIs. A novel DCNN is proposed to automatically segment the prostate and its lesion regions. This model is inspired by the U-Net model with the encoding-decoding path as the backbone, importing dense block, attention mechanism techniques, and group norm-Atrous Spatial Pyramidal Pooling. Data augmentation was used to avoid overfitting in training. In the experimental phase, the data set was randomly divided into a training (70%), testing set (30%). four-fold cross-validation methods were used to obtain results for each metric. Results: The proposed model achieved in terms of Iou, Dice score, accuracy, sensitivity, 95% Hausdorff Distance, 86.82%,93.90%, 94.11%, 93.8%,7.84 for the prostate, 79.2%, 89.51%, 88.43%,89.31%,8.39 for lesion region in segmentation. Compared to the state-of-the-art models, FCN, U-Net, U-Net++, and ResU-Net, the segmentation model achieved more promising results. Conclusion: The proposed model yielded excellent performance in accurate and automatic segmentation of the prostate and lesion regions, revealing that the novel deep convolutional neural network could be used in clinical disease treatment and diagnosis.

4.
Nutrients ; 15(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242257

RESUMO

Torreya grandis meal has a high protein content and an appropriate amino acid ratio, making it an excellent protein source for producing ACE inhibitory peptides. To promote its application in food, medicine, and other fields, an alkaline protease hydrolysate of Torreya grandis was used in this study to isolate and identify a novel angiotensin-converting enzyme inhibitory peptide, VNDYLNW (VW-7), using ultrafiltration, gel chromatography purification, LC-MS/MS, and in silico prediction. The results show that the IC50 value of VW-7 was 205.98 µM. The Lineweaver-Burk plot showed that VW-7 had a mixed-type inhibitory effect on ACE. Meanwhile, according to the results of molecular docking, VW-7 demonstrated a strong affinity for ACE (binding energy -10 kcal/mol). VW-7 was bound to ACE through multiple binding sites. In addition, VW-7 could remain active during gastrointestinal digestion in vitro. Nitric oxide (NO) generation in human endothelial cells could rise after receiving a pretreatment with VW-7. These results indicated that Torreya grandis meal protein can be developed into products with antihypertensive function, and VW-7 has broad application prospects in the field of antihypertensive.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Humanos , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Simulação de Acoplamento Molecular , Cromatografia Líquida , Células Endoteliais/metabolismo , Espectrometria de Massas em Tandem , Peptídeos/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/metabolismo
5.
Front Oncol ; 13: 1139588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035213

RESUMO

Objective: Recent knowledge concerning the significance of long non-coding RNA (lncRNA)-mediated ceRNA networks provides new insight into their possible roles as specific biomarkers for the treatment of osteosarcoma (OS). Thus, this study aims to clarify the functional relevance and mechanistic actions of lncRNA LBX2-AS1 in OS. Methods: Differential analysis was performed by integrating the TCGA and GTEx databases. Cox regression analysis was then employed to assess the prognostic value of the model. The expression of lncRNA LBX2-AS1 and miR-597-3p was quantified in OS cell lines by qRT-PCR. The proliferation, migration, invasion, and apoptosis of OS cell lines in response to manipulated lncRNA LBX2-AS1 were evaluated by MTT, colony formation, transwell, Western blot, and flow cytometry assays. Luciferase activity was assayed to validate the reciprocal regulation between lncRNA LBX2-AS1 and miR-597-3p. The protein levels of BRD4 and EMT-related factors were examined by Western blot assay. Finally, tumor growth in response to LBX2-AS1 knockdown was evaluated in xenograft-bearing nude mice. Results: By integrating the GTEx and TCGA databases, we identified 153 differentially expressed lncRNAs. Among them, 5 lncRNAs, RP11-535M15.1, AC002398.12, RP3-355L5.4, LBX2-AS1, and RP11.47A8.5, were selected to establish a model, which predicted the prognosis of OS. Higher lncRNA LBX2-AS1 expression was noted in OS tissues relative to that in normal tissues. Silencing lncRNA LBX2-AS1 facilitated apoptosis and curtailed proliferative, migratory, and invasive capacities of OS cells. Mechanistically, lncRNA LBX2-AS1 could elevate the expression of BRD4, an oncogene, by competitively binding to miR-597-3p. More importantly, knockdown of lncRNA LBX2-AS1 increased the sensitivity of OS cells to the BRD4 inhibitor JQ-1. Finally, the tumor growth of OS cell xenografts was constrained in vivo in the presence of lncRNA LBX2-AS1 knockdown. Conclusion: In conclusion, lncRNA LBX2-AS1 promotes the growth of OS and represses the sensitivity to JQ-1 by sponging miR-597-3p to elevate the expression of BRD4.

6.
Anticancer Agents Med Chem ; 23(12): 1421-1428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37038711

RESUMO

BACKGROUND: Due to the lack of effective drug treatment, triple-negative breast cancer (TNBC) is prone to recurrence and metastasis after an operation. As a glycolytic inhibitor, 3-bromopyruvic acid (3-BrPA) can inhibit the proliferation and induce apoptosis of TNBC cells. However, whether it has similar effects in animal models remains unclear. OBJECTIVE: To observe the effect of 3-BrPA on the growth and glucose metabolism of human TNBC transplanted tumors in nude mice and to investigate the mechanism. METHODS: We constructed subcutaneous xenografts of human TNBC in nude mice and treated them with low, medium and high concentrations of 3-BrPA. After 15 days, nude mice were sacrificed to detect hexokinase (HK) activity and adenosine triphosphate (ATP) content in tumor tissues. Hematoxylin-eosin (HE) staining was used to detect the damage of transplanted tumors and liver and kidney in nude mice, which 3-BrPA caused. The expression of c-Myc in tumor tissues was detected by Immunohistochemistry (IHC). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the apoptosis of tumor tissues. Besides, the expressions of Cytc, Bax, Bcl-2 and Caspase-9 were detected by Western blotting. RESULTS: Compared with the control group, intraperitoneal injection of 3-BrPA inhibited the growth of human TNBC transplant tumors, decreased HK activity and ATP production in tumor tissues, disrupted the tissue structure of transplant tumors, and did not significantly damage liver and kidney tissues. IHC staining and Western blotting showed that 3-BrPA could decrease the expression of c-Myc and Bcl-2, increase the expression of Cyt -c, Bax and Caspase-9 expression and promote apoptosis in tumor tissues. CONCLUSION: The above data indicate that 3-BrPA inhibits the growth of human TNBC transplanted tumors and promotes their apoptosis. Its anti-cancer mechanism might reduce HK activity by down-regulating c-Myc expression, eventually leading to decreased glycolytic pathway energy production and promoting apoptosis of transplanted tumors.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , Camundongos Nus , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Caspase 9/metabolismo , Xenoenxertos , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Trifosfato de Adenosina/farmacologia , Glucose
7.
Int Immunopharmacol ; 116: 109737, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738674

RESUMO

Gastric cancer (GC) is the most common form of gastrointestinal cancer, with a high mortality rate and limited treatment options. High levels of NEK2 are associated with malignant progression and a poor prognosis in several tumors; however, the role of NEK2 in GC remains unclear. We aimed to explore the potential role of NEK2 in the oncogenesis of GC and in the shaping of the tumor microenvironment (TME). The expression levels of NEK2 were analyzed using immunohistochemistry and real-time quantitative polymerase chain reaction. We found that NEK2 expression was upregulated in GC and was a predictor of a poor prognosis. Based on Kyoto Encyclopedia of Genes and Genomes pathway enrichment and gene set enrichment analyses, multiple tumor pathways were hyperactivated in patients with high NEK2 mRNA expression. Immunological characteristics indicated that NEK2 upregulation might lead to decreased immune cell infiltration and weakened immune activity in the cancer immunity cycle. Additionally, higher frequencies of amplifications and deletions were observed in the high NEK2 expression subpopulation. Based on the TME classification, patients with high expression of NEK2 were more susceptible to targeted therapy with drugs targeting the cell cycle and DNA replication. Following verification, a NEK2-derived genomic model reliably predicted the patient prognosis; A nomogram (radiation therapy, tumor/node/metastasis staging, and the NEK2-derived risk score) was used to better estimate an individual's survival probability. In summary, our findings indicate that NEK2 plays a vital role in the tumorigenesis of GC.


Assuntos
Neoplasias Gástricas , Humanos , Quinases Relacionadas a NIMA/genética , Neoplasias Gástricas/patologia , Farmacogenética , Prognóstico , Estadiamento de Neoplasias , Microambiente Tumoral/genética
8.
Clin Transl Oncol ; 25(8): 2408-2418, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36848028

RESUMO

BACKGROUND: Osteosarcoma is a malignant tumor that can present with pain in the bones, joints, and local masses. The incidence is highest in adolescents, and the most common sites are the distal femur, proximal tibia and proximal humerus metaphyseal. Doxorubicin is the first-line chemotherapeutic agent for the treatment of osteosarcoma, but it has many side effects. Cannabidiol is a non-psychoactive plant cannabinoid cannabinol (CBD) that has been shown to be effective against osteosarcoma; however, the molecular targets and mechanisms of CBD action in osteosarcoma remain unclear. METHODS: Cell proliferation, migration, invasion and colony formation were analyzed using two drugs alone or in combination to evaluate their inhibitory effects on the malignant characteristics of OS cells. Apoptosis and the cell cycle were detected by flow cytometry. The synergistic inhibitory effect of doxorubicin/cannabidiol on tumors was also detected in nude mouse xenotransplantation models. RESULTS: Through analysis of two osteosarcoma cell lines, MG63 and U2R, it was found that the cannabidiol/doxorubicin combination treatment synergistically inhibited growth, migration and invasion and induced apoptosis, blocking G2 stagnation in OS cells. Further mechanistic exploration suggests that the PI3K-AKT-mTOR pathway and MAPK pathway play an important role in the synergistic inhibitory effect of the two drugs in osteosarcoma. Finally, in vivo experimental results showed that the cannabidiol/doxorubicin combination treatment significantly reduced the number of tumor xenografts compared to cannabidiol alone or doxorubicin alone. CONCLUSIONS: Our findings in this study suggest that cannabidiol and doxorubicin have a synergistic anticancer effect on OS cells, and their combined application may be a promising treatment strategy for OS.


Assuntos
Antineoplásicos , Neoplasias Ósseas , Canabidiol , Osteossarcoma , Animais , Camundongos , Humanos , Antineoplásicos/uso terapêutico , Fosfatidilinositol 3-Quinases , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Osteossarcoma/metabolismo , Apoptose , Neoplasias Ósseas/patologia , Proliferação de Células
9.
Exp Ther Med ; 24(2): 520, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35837063

RESUMO

Aerobic glycolysis is commonly observed in tumor cells, including triple-negative breast cancer (TNBC) cells, and the rate of aerobic glycolysis is higher in TNBC cells than in non-TNBC cells. Hexokinase 2 (HK2) is a key enzyme in the glycolytic pathway and a target of the transcription factor c-Myc, which is highly expressed in TNBC and promotes aerobic glycolysis by enhancing HK2 expression. As an inhibitor of HK2, 3-bromopyruvic acid (3-BrPA) exhibits good therapeutic efficacy in intrahepatic and extrahepatic tumors and inhibits the proliferation of human tumor cells with high expression levels of c-Myc in vivo and in vitro. In addition, 3-BrPA combines with photodynamic therapy to inhibit TNBC cell migration. Thioredoxin-interacting protein (TXNIP) competes with c-Myc to reduce glucose consumption in tumor cells to restrain cell proliferation. A comparative analysis was performed in the present study in TNBC (HCC1143) and non-TNBC (MCF-7) cell lines to explore the effect of 3-BrPA on energy metabolism in TNBC cells and to investigate the possible mechanism of action. Cell viability and apoptosis were detected through Cell Counting Kit-8 and flow cytometry assays, respectively. Expression levels of HK2, glucose transporter 1, TXNIP, c-Myc and mitochondria-regulated apoptosis pathway proteins were measured through western blotting. 3-BrPA inhibited cell proliferation, downregulated c-Myc and HK2 expression, and upregulated TXNIP expression in TNBC cells, but it doesn't have the same effect on non-TNBC cells. Furthermore, 3-BrPA induced the typical manifestations of mitochondrial-mediated apoptosis such as decreasing Bcl-2 expression and increasing Bax, Cyt-C and Caspase-3 expression. The present results suggested that 3-BrPA promoted TXNIP protein expression and reduced HK2 expression in TNBC cells by downregulating c-Myc expression, inhibiting glycolysis including suppressing lactate generation, intracellular ATP generation and HK activity, inducing mitochondrial-mediated apoptosis and eventually suppressing TNBC cell proliferation. These findings may reveal a novel therapeutic target for the clinical treatment of TNBC.

10.
Ocul Surf ; 22: 103-109, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333155

RESUMO

PURPOSE: To investigate the safety and feasibility of topical injection of bone marrow derived mesenchymal stem cells (BM-MSCs) in acute severe ocular burns. METHODS: In this open-label,single-arm study, subconjunctival injection of allogenic BM-MSCs combined with standard treatment was given to 16 patients with acute severe ocular burns (Dua's grade IV to VI) within 2 weeks after injury. The primary outcome was efficacy rate which referred to the proportion of complete corneal epithelialization patients without perforation. The secondary outcome was safety, visual acuity, the number of symblephara, and elevated intraocular pressure. RESULTS: One patient was lost to follow-up. During the follow-up period, no corneal perforation was developed. Complete corneal epithelialization was noted 8 (ranged 4-10 weeks) weeks after treatment in 13 eyes (81.3%). The efficacy rate was 87.5% (95% confidence interval, CI: 61.7-98.4). Hypopyon was detected and later well controlled in 1 eye. Partial or total limbal stem cell deficiency (LSCD) was noted in all eyes. Improvement of visual acuity was achieved in 5 out of 16 eyes (31.3%). Seven eyes' visual acuity was reached 0.1. Symblepharon with varied severity was noted in 5 eyes. Two eyes had elevated intraocular pressure. CONCLUSIONS: This study confirms the safety of subconjunctival injection of BM-MSCs as an innovative and convenient procedure in ocular burns. The overall result is promising considering the absence of perforation, the low severity of symblepharon and visual acuity improvement.


Assuntos
Queimaduras Químicas , Doenças da Córnea , Queimaduras Oculares , Limbo da Córnea , Células-Tronco Mesenquimais , Queimaduras Químicas/terapia , Doenças da Córnea/terapia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/terapia , Estudos de Viabilidade , Humanos , Estudos Retrospectivos
11.
J Bioenerg Biomembr ; 53(3): 309-320, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33694017

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and fetal cardiovascular disease. Tripartite motif 32 (TRIM32) is a member of TRIM family that has been found to be involved in cardiovascular disease. However, the role of TRIM32 in PAH remains unclear. Here we investigated the effects of TRIM32 on hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) in vitro. Our results showed that TRIM32 protein level in the plasma samples from PAH patients was decreased as compared with healthy volunteers. Exposure to hypoxia condition caused a significant decrease in TRIM32 expression in PASMCs. Overexpression of TRIM32 inhibited hypoxia-induced proliferation and migration of PASMCs. TRIM32 overexpression elevated the increased apoptotic rate and caspase-3 activity in hypoxia-induced PASMCs. Moreover, overexpression of TRIM32 reversed hypoxia-induced down-regulation of myocardin, SM 22 and calponin, as well as up-regulation of osteopontin (OPN). Whereas, TRIM32 knockdown shwed the opposite effect. Furthermore, overexpression of TRIM32 inhibited hypoxia-induced activation of PI3K/Akt with decreased phosphorylated level of PI3K and Akt. Additionally, activation of PI3K/Akt by IGF-1 treatment reversed the effects of TRIM32 on hypoxia-induced PASMCs. In conclusion, these findings indicated that TRIM32 was involved in the development of PAH through regulating the proliferation, migration, apoptosis and dedifferentiation of PASMCs, which might be mediated by the PI3K/Akt signaling pathway. Thus, TRIM32 might be a potential target for PAH treatment.


Assuntos
Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipertensão Arterial Pulmonar/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Humanos , Masculino , Hipertensão Arterial Pulmonar/fisiopatologia , Transfecção
12.
Graefes Arch Clin Exp Ophthalmol ; 259(4): 929-940, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33237391

RESUMO

PURPOSE: To investigate the therapeutic effect of subconjunctival injection of tumor necrosis factor-α (TNF-α) pre-stimulated bone marrow-derived mesenchymal stem cells (BMMSCs) on ocular alkali burns in a rat model. METHODS: After applying a 6 mm filter paper soaking in 1 N NaOH on the cornea of rats, the suspension of TNF-α pre-stimulated BMMSCs, BMMSCs and PBS were given subconjunctivally and respectively. Corneal epithelial defect, corneal opacity, inflammation as well as PTGS2 and TSG-6 expression on day 7 and fibrosis on day 14 were compared. RESULTS: TNF-α pre-stimulated BMMSCs group had a more predominate effect on promoting corneal epithelial repairing, decreasing corneal opacity, reducing inflammatory cells and CD68 + macrophages on day 7 and suppressing fibrosis on day 14 compared to BMMSCs group. Besides, it had significant increased expressions of PTGS2 and TSG-6 in vitro. Pre-treated with Indomethacin revealed a reverse effect on above-mentioned changes. CONCLUSION: Subconjunctival injection of TNF-α pre-stimulated BMMSCs enhanced anti-inflammatory and anti-fibrotic effect in ocular alkali burns, which was possibly though up regulation of PTGS2 and TSG-6 expression.


Assuntos
Queimaduras Químicas , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios/uso terapêutico , Medula Óssea , Queimaduras Químicas/tratamento farmacológico , Fibrose , Ratos , Fator de Necrose Tumoral alfa
13.
Cell Biol Int ; 44(10): 2131-2139, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32672875

RESUMO

Multiple studies have confirmed the pro-oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor-ß (TGF-ß)/Smad signaling in PCa cells. The effects of si-PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF-ß1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF-ß/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/fisiologia , Neoplasias da Próstata , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transdução de Sinais
15.
Biochem Biophys Res Commun ; 509(3): 746-752, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30621914

RESUMO

MicroRNA-501-3p (miR-501-3p) has been reported as a novel cancer-related miRNA in many types of cancer. However, the precise biological function of miR-501-3p in prostate cancer remains unknown. In this study, we aimed to investigate the regulatory effect and mechanism of miR-501-3p on cell growth of prostate cancer cells. We found that miR-501-3p expression was significantly downregulated in prostate cancer tissues and cell lines. Gain-of-function experiments showed that upregulation of miR-501-3p expression significantly decreased cell proliferation and colony formation, and induced cell cycle arrest in the G0/G1 phase. Bioinformatics analysis predicted that cell cycle-related and expression-elevated protein in tumor (CREPT) was a potential target gene of miR-501-3p., and the results of our luciferase reporter assay confirmed that miR-501-3p bound to the 3'-untranslated region of CREPT at the predicted binding site. Moreover, miR-501-3p was shown to negatively regulate CREPT expression in prostate cancer cells. Correlation analysis showed that miR-501-3p was inversely correlated with CREPT expression in prostate cancer tissues. Knockdown studies revealed that miR-501-3p regulated the expression of cyclin D1 by targeting CREPT. Additionally, the inhibitory effect of miR-501-3p on prostate cancer cell growth was partially reversed by CREPT overexpression. Overall, these results suggest that miR-501-3p restricts prostate cancer cell growth by targeting CREPT to inhibit the expression of cyclin D1. These findings indicate that the miR-501-3p/CREPT/cyclin D1 axis plays a crucial role in the progression of prostate cancer and may serve as potential therapeutic target.


Assuntos
Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias da Próstata/patologia
16.
Urology ; 123: 296.e9-296.e18, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29730257

RESUMO

OBJECTIVE: To reveal the potential role of the basic helix-loop-helix myogenic transcription regulator MyoD in the regulation of castration-resistant prostate cancer. METHODS: Expression level of MyoD was assessed in prostate cancer tissues using quantitative reverse transcription polymerase chain reaction and immunohistochemistry and in experimentally induced castration-resistant LNCaP/R cells using quantitative reverse transcription polymerase chain reaction and immunoblotting. Effect of MyoD knockdown on LNCaP/R cell progression was determined by assessing cell proliferation, apoptosis, and colony formation rate. The effect of MyoD knockdown on the oxidative stress state in PC3 cells was determined by assessing antioxidant response gene expression and glutathione synthetase-to-glutathione ratio. Finally, the functional link between the nuclear factor erythroid-derived 2-related factor 1 (NRF1) and the regulation of antioxidant response element-driven transcription by MyoD was studied at both molecular and functional levels. RESULTS: MyoD expression was significantly upregulated in hormone-refractory prostate cancer tissues and in experimentally induced castration-resistant LNCaP/R cells, and MyoD knockdown effectively impaired LNCaP/R cell proliferation and promoted apoptosis under androgen-depleted condition. Moreover, MyoD enhanced the glutathione production and protected against oxidative stress by positively regulating a cluster of antioxidant genes known to be the downstream targets of NRF1. Mechanistically, MyoD could augment the antioxidant response element-driven transcription in an NRF1-dependent manner, and the stimulatory effect of MyoD on the antioxidant response was substantially compromised in the presence of NRF1 small interfering RNA treatment. CONCLUSION: We have identified an unexpected collaboration between MyoD and NRF1 under androgen-depleted condition, which may serve as an important adaptive mechanism during the pathogenesis of castration-resistant prostate cancer.


Assuntos
Proteína MyoD/fisiologia , Neoplasias de Próstata Resistentes à Castração/etiologia , Antioxidantes , Proliferação de Células , Humanos , Masculino , Proteína MyoD/biossíntese , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Células Tumorais Cultivadas
17.
Endocr Relat Cancer ; 26(1): 181-195, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30400002

RESUMO

Insights into the mechanisms by which key factors stimulate cell growth under androgen-depleted conditions is a premise to the development of effective treatments with clinically significant activity in patients with castration-resistant prostate cancer (CRPC). Herein, we report that, the expression of Krüppel-like factor 14 (KLF14), a master transcription factor in the regulation of lipid metabolism, was significantly induced in castration-insensitive PCa cells and tumor tissues from a mouse xenograft model of CRPC. KLF14 upregulation in PCa cells, which was stimulated upstream by oxidative stress, was dependent on multiple pathways including PI3K/AKT, p42/p44 MAPK, AMPK and PKC pathways. By means of ectopic overexpression and genetic inactivation, we further show that KLF14 promoted cell growth via positive regulation of the antioxidant response under androgen-depleted conditions. Mechanistically, KLF14 coupled to p300 and CBP to enhance the transcriptional activation of HMOX1, the gene encoding the antioxidative enzyme heme oxygenase-1 (HO-1) that is one of the most important mechanisms of cell adaptation to stress. Transient knockdown of HMOX1 is sufficient to overcome KLF14 overexpression-potentiated PCa cell growth under androgen-depleted conditions. From a pharmacological standpoint, in vivo administration of ZnPPIX (a specific inhibitor of HO-1) effectively attenuates castration-resistant progression in the mouse xenograft model, without changing KLF14 level. Together, these results provide comprehensive insight into the KLF14-dependent regulation of antioxidant response and subsequent pathogenesis of castration resistance and indicate that interventions targeting the KLF14/HO-1 adaptive mechanism should be further explored for CRPC treatment.


Assuntos
Heme Oxigenase-1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Heme Oxigenase-1/genética , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Estresse Oxidativo , Neoplasias de Próstata Resistentes à Castração/genética , Transdução de Sinais
18.
J Cell Biochem ; 120(5): 7581-7589, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30444026

RESUMO

To determine how the lncRNA FER1L4 in ovarian cancer cells influences paclitaxel (PTX) resistance, we examined the expression level of FER1L4 in human ovarian epithelial cell lines IOSE80 and HOSEpiC and human ovarian cancer cell lines OVCAR-3, Caov-3, and SKOV3 through RNA isolation and quantitative polymerase chain reaction (qRT-PCR). SKOV3 cell lines were treated with PTX. The cell survival rate and apoptosis rate of SKOV3 and SKOV3-PR at different PTX dose levels were evaluated. Next, qRT-PCR was performed to detect the expression of FER1L4 in SKOV3 and SKOV3-PR cell lines. SKOV3-PR cell lines were transfected with pcDNA3.1 as the control group (SKOV3-PR/pcDNA3.1) or pcDNA3.1-FER1L4 to upregulate the expression level of FER1L4 (SKOV3-PR/pcDNA3.1-FER1L4). The level of cell survival, apoptosis, and colony formation were compared between the two groups using MTT, flow cytometry analysis, and colony formation assay. To reveal the molecular mechanism, we measured the relative protein phosphorylation level of ERK and MAPK in SKOV3, SKOV3-PR, SKOV3-PR/pcDNA3.1, and SKOV3-PR/pcDNA3.1-FER1L4 groups using an enzyme-linked immunosorbent assay. The effects of SB203580 (a p38 MAPK inhibitor) on PTX were also investigated to reveal the function of the MAPK pathway on the PTX tolerance of SKOV3. In comparison with normal ovarian epithelial cells, FER1L4 was downregulated. The FER1L4 level was decreased in human ovarian cancer cells with drug resistance than in common ovarian cancer cells. The upregulation of FER1L4 could promote the PTX sensitivity of ovarian cancer cells. The increased level of FER1L4 could suppress the PTX resistance of ovarian cancer cells through the inhibition of the MAPK signaling pathway.

19.
Urology ; 105: 208.e11-208.e17, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28088556

RESUMO

OBJECTIVE: To identify the potential downstream targets of hsa-miR-125a-3p, a mature form of miR-125a, during the pathogenesis of chemoresistance in prostate cancer (PCa). MATERIALS AND METHODS: The expression levels of hsa-miR-125a-3p were assessed in chemoresistant PCa tissues and experimentally established chemoresistant cells using quantitative reverse transcription-polymerase chain reaction. The effect of hsa-miR-125a-3p knockdown or hsa-miR-125a-3p overexpression on the Dox-induced cell death was evaluated using apoptosis ELISA in chemosensitive PC-3 cells or in chemoresistant PC-3 cells (PC-3R). Finally, using multiple assays, the regulation of metastasis-associated protein 1 (MTA1), an essential component of the Mi-2-nucleosome remodeling deacetylation complex, by hsa-miR-125a-3p was studied at both molecular and functional levels. RESULTS: The expression of hsa-miR-125a-3p was significantly downregulated in chemoresistant PCa tissues and cells. Inhibition of hsa-miR-125a-3p significantly increased docetaxel (Dox) resistance in PC-3 cells, whereas upregulation of hsa-miR-125a-3p effectively reduced Dox resistance in PC-3R, suggesting that this microRNA (miRNA) may act as a tumor suppressor along the pathogenesis of drug resistance. Mechanistically, hsa-miR-125a-3p induced apoptosis and Dox sensitivity in PCa cells through regulating MTA1. CONCLUSION: Our results collectively indicate that miRNA-MTA1 can form a delicate regulatory loop to maintain a bistable state in the Dox chemosensitivity, and future endeavor in this filed should provide important clues to develop miRNA-based therapies that benefit advanced PCa patients through modulating the functional status of MTA1.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Histona Desacetilases/metabolismo , MicroRNAs/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Repressoras/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/patologia , Transativadores
20.
Int J Mol Med ; 39(1): 167-173, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27909715

RESUMO

It is unknown whether a scaffold containing both small intestinal submucosa (SIS) and mesenchymal stem cells (MSCs) for transplantation may improve pancreatic islet function and survival. In this study, we examined the effects of a SIS-MSC scaffold on islet function and survival in vitro and in vivo. MSCs and pancreatic islets were isolated from Sprague-Dawley rats, and SIS was isolated from Bamei pigs. The islets were apportioned among 3 experimental groups as follows: SIS-islets, SIS-MSC-islets and control-islets. In vitro, islet function was measured by a glucose-stimulated insulin secretion test; cytokines in cultured supernatants were assessed by enzyme-linked immunosorbent assay; and gene expression was analyzed by reverse transcription-quantitative PCR. In vivo, islet transplantation was performed in rats, and graft function and survival were monitored by measuring the blood glucose levels. In vitro, the SIS-MSC scaffold was associated with improved islet viability and enhanced insulin secretion compared with the controls, as well as with the increased the expression of insulin 1 (Ins1), pancreatic and duodenal homeobox 1 (Pdx1), platelet endothelial cell adhesion molecule 1 [Pecam1; also known as cluster of differentiation 31 (CD31)] and vascular endothelial growth factor A (Vegfa) in the islets, increased growth factor secretion, and decreased tumor necrosis factor (TNF) secretion. In vivo, the SIS-MSC scaffold was associated with improved islet function and graft survival compared with the SIS and control groups. On the whole, our findings demonstrate that the SIS-MSC scaffold significantly improved pancreatic islet function and survival in vitro and in vivo. This improvement may be associated with the upregulation of insulin expression, the improvement of islet microcirculation and the secretion of cytokines.


Assuntos
Mucosa Intestinal/fisiologia , Intestino Delgado/fisiologia , Ilhotas Pancreáticas/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Sobrevivência de Tecidos , Animais , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA