Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 17(8): 2191-2204, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33459746

RESUMO

An intrinsic self-healing polyurethane (PU) elastomer with excellent self-healing efficiency was prepared. The self-healing properties of this elastomer as well as the temperature dependence of self-healing can be tailored by regulating the molar ratio of hard to soft segments. The self-healing efficiency of 92.5% is the highest when the molar ratio of 4,4-methylenedicyclohexyl diisocyanate (HMDI) to polypropylene carbonate polyol (PPC) is 1.3 and the temperature is 25 °C. In situ temperature swing infrared spectra and low-field nuclear magnetic resonance reveal that the soft segment, PPC, endows PU with a dense dynamic hydrogen bond network, and the dissociation and reconstruction of the hydrogen bond network enable the PU to heal. To date, the exchange of hydrogen bonds has not been observed intuitively through experimental means. Therefore, the number, type, strength, lifetime, and the exchange of hydrogen bonds in the self-healing process at different temperatures were investigated by molecular dynamics (MD) simulation. The simulated results show that the type of hydrogen bond exchange between functional groups will be affected by temperature. The hydrogen bonds between urethane and urea groups play a leading role in the self-healing properties due to the high strength and a large number of hydrogen bonds at both 25 and 50 °C. The stronger strength, longer lifetime, and greater number of effective hydrogen bonds at 25 °C make the self-healing efficiency of PU higher than at 50 °C.

2.
RSC Adv ; 9(68): 40062-40071, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541406

RESUMO

Based on our previous studies on the modification of in-chain styrene butadiene rubber (SBR) using 3-mercaptopropionic acid as well as its composites filled with silica, we further constructed two types of models (amorphous and layered) to investigate the temperature dependence of the interfacial bonding characteristics of silica/SBR composites via molecular dynamics (MD) simulation. The competing effects of rubber-rubber interactions and filler-rubber interactions were identified, and the relationship between the competing effects and the temperature was determined. Besides this, the effect of temperature on the mobility and distribution of SBR chains on the surface of silica was investigated. It was found that the stronger the interfacial interactions, the less sensitive the motion of SBR chains to temperature. Finally, the number and length of hydrogen bonds as a function of temperature were analyzed. These simulated results deepened the understanding of interface temperature dependence of the silica/SBR composites and gave a molecular level explanation for the existence of an optimum modifier content (14.2 wt%) that is temperature independent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA