Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(4): 3531-3553, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38358910

RESUMO

Despite the advent of precision therapy for breast cancer (BRCA) treatment, some individuals are still unable to benefit from it and have poor survival prospects as a result of the disease's high heterogeneity. Cell senescence plays a crucial role in the tumorigenesis, progression, and immune regulation of cancer and has a major impact on the tumor microenvironment. To find new treatment strategies, we aimed to investigate the potential significance of cell senescence in BRCA prognosis and immunotherapy. We created a 9-gene senescence-related signature. We evaluated the predictive power and the role of signatures in the immune microenvironment and infiltration. In vitro tests were used to validate the expression and function of the distinctive critical gene ACTC1. Our risk signature allows BRCA patients to receive a Predictive Risk Signature (PRS), which may be used to further categorize a patient's response to immunotherapy. Compared to conventional clinicopathological characteristics, PRS showed strong predictive efficacy and precise survival prediction. Moreover, PRS subgroups were examined for altered pathways, mutational patterns, and possibly useful medicines. Our research offers suggestions for incorporating senescence-based molecular classification into risk assessment and ICI therapy decision-making.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Imunoterapia , Mama , Carcinogênese , Transformação Celular Neoplásica , Microambiente Tumoral/genética , Prognóstico
2.
J Oleo Sci ; 71(8): 1221-1228, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35793977

RESUMO

The antifungal mechanism of plant essential oil has always been a concern in the agriculture and forestry science field. In this investigation, besides the evaluation of inhibitory activities of twenty-three essential oils against Candida albicans in vitro, identification and quantification of the chemical composition of Litsea cubeba essential oil by gas chromatography-mass spectrometry were investigated. Further development, we assessed the mechanism of L. cubeba essential oil against C. albicans by molecular docking. Litsea cubeba essential oil displayed the strongest inhibitory activity among these oils and the diameter of the circle against C. albicans was more than 50 mm. Maximum three components were identified with trans-citral (33.6%), cis-citral (30.3%), d-limonene (8.2%). Secretory aspartate protease (SAP5) and ß-1,3-glucan synthase (ß-1,3-GS) are two key enzyme proteins that inhibit the growth of C. albicans. Molecular docking studies reveal chemical binding forces of cis-citral, trans-citral and d-limonene to SAP5 are -21.76 kJ/mol, -22.18 kJ/mol and -24.27 kJ/mol, to ß-1,3-GS are -23.01 kJ/mol, -25.52 kJ/mol and -23.85 kJ/mol, respectively. The most preferable binding mechanism was observed against SAP5 and ß-1,3-GS due to hydrophobic interaction, as well as hydrogen bonding between citral molecules. The research results suggest the mechanism of chemical components in L. cubeba essential oil inhibits the growth of C. albicans, which provides a reference to the development and utilization of essential oil.


Assuntos
Litsea , Óleos Voláteis , Antifúngicos/farmacologia , Candida albicans , Limoneno , Litsea/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Óleos de Plantas/química
3.
Nat Methods ; 17(5): 541-550, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313222

RESUMO

Recombinant adeno-associated viruses (rAAVs) are efficient gene delivery vectors via intravenous delivery; however, natural serotypes display a finite set of tropisms. To expand their utility, we evolved AAV capsids to efficiently transduce specific cell types in adult mouse brains. Building upon our Cre-recombination-based AAV targeted evolution (CREATE) platform, we developed Multiplexed-CREATE (M-CREATE) to identify variants of interest in a given selection landscape through multiple positive and negative selection criteria. M-CREATE incorporates next-generation sequencing, synthetic library generation and a dedicated analysis pipeline. We have identified capsid variants that can transduce the central nervous system broadly, exhibit bias toward vascular cells and astrocytes, target neurons with greater specificity or cross the blood-brain barrier across diverse murine strains. Collectively, the M-CREATE methodology accelerates the discovery of capsids for use in neuroscience and gene-therapy applications.


Assuntos
Encéfalo/virologia , Proteínas do Capsídeo/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Integrases/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Proteínas do Capsídeo/genética , Feminino , Terapia Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Tropismo Viral
4.
Nat Methods ; 16(2): 183-190, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700903

RESUMO

T cell receptor (TCR) ligand discovery is essential for understanding and manipulating immune responses to tumors. We developed a cell-based selection platform for TCR ligand discovery that exploits a membrane transfer phenomenon called trogocytosis. We discovered that T cell membrane proteins are transferred specifically to target cells that present cognate peptide-major histocompatibility complex (MHC) molecules. Co-incubation of T cells expressing an orphan TCR with target cells collectively presenting a library of peptide-MHCs led to specific labeling of cognate target cells, enabling isolation of these target cells and sequencing of the cognate TCR ligand. We validated this method for two clinically employed TCRs and further used the platform to identify the cognate neoepitope for a subject-derived neoantigen-specific TCR. Thus, target cell trogocytosis is a robust tool for TCR ligand discovery that will be useful for studying basic tumor immunology and identifying new targets for immunotherapy.


Assuntos
Antígenos/química , Técnicas Genéticas , Receptores de Antígenos de Linfócitos T/química , Linfócitos T/citologia , Imunidade Adaptativa , Animais , Biotinilação , DNA/análise , Epitopos/química , Biblioteca Gênica , Células HEK293 , Humanos , Imunoterapia , Células Jurkat , Células K562 , Ligantes , Camundongos , Peptídeos/química , Fagocitose , Linfócitos T/imunologia
5.
Exp Ther Med ; 17(2): 1337-1345, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30680011

RESUMO

Glioma is a type of malignant tumor accounting for 80% of all brain cancer morbidity. The long non-coding RNA (lncRNA) PVT1 has been demonstrated to be an oncogenic lncRNA in other types of cancer. However, the role of PVT1 in glioma is still unknown. The aim of the present study was to investigate the role of PVT1 in glioma, and its potential association with microRNA (miR)-200a. miR-200a mimics and small interfering (si)RNA transfection were utilized to construct miR-200a overexpression and knockdown models to investigate the effect of miR-200a on glioma cells. Slow-virus infection was used to transfect cells. Western blotting and reverse transcription-quantitative polymerase chain reaction were applied for the quantitative analysis of mRNA and protein expression. Apoptosis of podocytes was detected by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling staining. PVT1 expression in glioma was upregulated. In vitro, PVT1 silencing via transfection with si-PVT1 suppressed proliferation and invasion and induced G0/G1 phase arrest. Luciferase reporter assay revealed the association between miR-200a and the PVT1 3'-untranslated region. Furthermore, experiments examining both miR-200a and PVT1 indicated that miR-200a could reverse the effects of PVT1 on glioma cell phenotypes. The present study reveals the overexpression of PVT1 in glioma tissue and cells and the oncogenic role of PVT1 in gliomagenesis via sponging miR-200a, thus providing a potential biomarker for the early detection of glioma and prognosis prediction.

6.
Mol Cell ; 63(1): 97-109, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27292797

RESUMO

Small non-coding RNAs called piRNAs serve as guides for an adaptable immune system that represses transposable elements in germ cells of Metazoa. In Drosophila the RDC complex, composed of Rhino, Deadlock and Cutoff (Cuff) bind chromatin of dual-strand piRNA clusters, special genomic regions, which encode piRNA precursors. The RDC complex is required for transcription of piRNA precursors, though the mechanism by which it licenses transcription remained unknown. Here, we show that Cuff prevents premature termination of RNA polymerase II. Cuff prevents cleavage of nascent RNA at poly(A) sites by interfering with recruitment of the cleavage and polyadenylation specificity factor (CPSF) complex. Cuff also protects processed transcripts from degradation by the exonuclease Rat1. Our work reveals a conceptually different mechanism of transcriptional enhancement. In contrast to other factors that regulate termination by binding to specific signals on nascent RNA, the RDC complex inhibits termination in a chromatin-dependent and sequence-independent manner.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/biossíntese , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica , Adenosina/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Exorribonucleases/metabolismo , Genes Reporter , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos , Polímeros/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Terminação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA