Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(3): 266-280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436777

RESUMO

With the rapid development of industrialization and urbanization, the issue of copper (Cu) and cadmium (Cd) pollution in aquatic ecosystems has become increasingly severe, posing threats to the ovarian tissue and reproductive capacity of aquatic organisms. However, the combined effects of Cu and Cd on the ovarian development of fish and other aquatic species remain unclear. In this study, female Nile tilapia (Oreochromis niloticus) were individually or co-exposed to Cu and/or Cd in water. Ovarian and serum samples were collected at 15, 30, 60, 90, and 120 days, and the bioaccumulation, ovarian development, and hormone secretion were analyzed. Results showed that both single and combined exposure significantly reduced the gonadosomatic index and serum hormone levels, upregulated estrogen receptor (er) and progesterone receptor (pr) gene transcription levels, and markedly affected ovarian metabolite levels. Combined exposure led to more adverse effects than single exposure. The data demonstrate that the Cu and Cd exposure can impair ovarian function and structure, with more pronounced adverse effects under Cu and Cd co-exposure. The Cu and Cd affect the metabolic pathways of nucleotides and amino acids, leading to ovarian damage. This study highlights the importance of considering combined toxicant exposure in aquatic toxicology research and provides insights into the potential mechanisms underlying heavy metal-induced reproductive toxicity in fish.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Animais , Feminino , Cobre/toxicidade , Cobre/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Ecossistema , Hormônios/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
2.
Ecotoxicol Environ Saf ; 274: 116197, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479310

RESUMO

Nile tilapia (Oreochromis niloticus) is a worldwide farmed fish and has been widely used for the study on comparative immunology in teleosts. It is well known that cadmium (Cd) can cause a variety of adverse effects in fish. However, data on the effects of Cd in fish liver and the defensive mechanisms of these effects using transcriptome approach are relatively scarce to date. In this study, by using an RNA sequencing approach, the gene expression profiling was performed in livers of tilapia exposed to 0 (control), 50, 100, and 200 µg/L of Cd for 2 months. The results showed that exposure to 50 µg/L Cd altered the expressions of 911 genes, while exposure to 100 and 200 µg/L Cd resulted in 4318 and 3737 differentially expressed genes compared to the control. Weighted correlation network analysis (WGCNA) and gene ontology (GO) analysis identified a 14-gene network linked to the immune system development. Further, in a fuzzy analysis, the GO term immune system development was enriched in cluster 3, and gene expression decreased with increasing Cd levels in a concentration-dependent manner. The qPCR and RNA-seq results identified 4 genes, i.e., dnmt3bb.1, sf3b1, SMARCAL1, and zap70, as convenient potential biological indicators for detecting waterborne Cd. The present results help systematically understand the effects of Cd on the hepatic transcriptome in tilapia.


Assuntos
Ciclídeos , Tilápia , Animais , Ciclídeos/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Perfilação da Expressão Gênica , Tilápia/metabolismo , Transcriptoma
3.
Fish Shellfish Immunol ; 140: 108962, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37488037

RESUMO

The popularity of intensive fish farming has led to the emergence of fish diseases characterized by hepatobiliary syndrome. Artemisia argyi (A. argyi) essential oils have anti-inflammatory and anti-oxidant effects. However, their alleviating effects and mechanism on liver disease in fish are still unclear. Thus, adult zebrafish were used to construct an animal model to observe histopathological damages, determine biochemical parameters and expression of inflammatory cytokines and mRNAs in the PPAR-γ/NF-κB pathway, and conduct 16 S sequencing of intestinal microbiota. The results found that after treatment with A. argyi essential oil, the histopathological damage caused by ethanol was relieved; the CAT, SOD, and GSH levels were remarkably elevated, while the MDA level was obviously lowered (P < 0.05); the expression levels of IL-10 and IFN-γ mRNAs were enhanced, but the levels of IL-1ß, IL-6, PPAR-γ, NF-κB, and TNF-α mRNAs were reduced (P < 0.05) relative to the EtOH group. A. argyi essential oil remarkably attenuated the damage to intestinal tissue structure, and elevated the levels of Muc2, ZO-1, Claudin-1, and Occludin mRNA (P < 0.05). Sequencing of the gut flora showed that A. argyi essential oil significantly altered the composition of gut microbes compared with the EtOH group. In addition, KEGG and COG analyses also showed significant (P < 0.05) changes in acetate cycling metabolism in the EtOH group, catechol 2, 3-dioxygenase and nitroreductase were significantly increased (P < 0.001), and lipid metabolism and terpenoid synthesis were significantly elevated (P < 0.001) in A. argyi essential oil group. The results indicate that A. argyi essential oil could effectively relieve ethanol-caused histopathological damage of livers by modulating the composition of gut microbiota, thus inhibiting the level of IL-1ß and mRNAs in the PPAR-γ/NF-κB pathway, increasing the IL-10 level, reducing the oxidative stress. This may offer a rationale for further research on the rationality of A. argyi as a substitute for feed antibiotics in aquaculture.


Assuntos
Artemisia , Hepatopatias , Óleos Voláteis , Animais , Peixe-Zebra/metabolismo , Óleos Voláteis/farmacologia , Interleucina-10 , NF-kappa B/metabolismo , Artemisia/química , Artemisia/metabolismo , Receptores Ativados por Proliferador de Peroxissomo , Etanol
4.
Aquac Nutr ; 2023: 6306517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288328

RESUMO

Ammonia is a key risk factor in intensive aquaculture systems. This experiment is aimed at investigating the influence of dietary protein levels on genetically improved farmed tilapia (GIFT, Oreochromis niloticus) under chronic ammonia stress. GIFT juveniles of 4.00 ± 0.55 g were exposed to high ammonia level at 0.88 mg/L and fed with six diets comprising graded protein levels at 22.64%, 27.26%, 31.04%, 35.63%, 38.47%, and 42.66% for 8 weeks. The fish in negative control was fed the diet with 31.04% protein in normal water (0.02 mg ammonia/L water). Our results showed that high ammonia exposure (0.88 mg/L) caused significant decrease in fish growth performance, hematological parameters, liver antioxidant enzymes (catalase and glutathione peroxidase), and gill Na+- and K+-dependent adenosine triphosphatase (Na+/K+-ATP) activity. When fish were under high ammonia exposure, the weight gain rate, special growth rate, feed efficiency, and survival rate elevated significantly with dietary protein supplementation increase to 35.63%, whereas protein efficiency ratio, hepatosomatic index, and viscerosomatic index showed a decreased tendency. Dietary protein administration significantly enhanced crude protein but reduced crude lipid contents in the whole fish. Fish fed diets with 35.63%-42.66% protein had higher red blood cell counts and hematocrit percentage than fish fed 22.64% protein diet. The values of serum biochemical indices (lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase), hepatic antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and gill Na+/K+-ATP activity were all elevated with the increment of dietary protein. Moreover, histological analysis indicated that dietary protein administration could prevent the ammonia-induced damages in fish gill, kidney, and liver tissues. Based on weight gain rate as a response criterion, the optimal dietary protein requirement for GIFT juveniles under chronic ammonia stress was 37.9%.

5.
Aquat Toxicol ; 258: 106472, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907724

RESUMO

Female tilapia of the Genetic Improvement of Farmed Tilapia (GIFT) strain were selected as an animal model to study the effects of four hormonal drugs in mitigating ovarian damage following exposure to copper and cadmium. After combined exposure to copper and cadmium in aqueous phase for 30 d, tilapia were randomly injected with oestradiol (E2), human chorionic gonadotropin (HCG), luteinizing hormone releasing hormone (LHRH), or coumestrol and raised in clear water for 7 d Ovarian samples were collected after combined exposure to heavy metals for 30 d and after recovery for 7 d Gonadosomatic index (GSI), copper and cadmium levels in the ovary, reproductive hormone levels in serum, and mRNA expression of key reproductive regulatory factors were determined. After 30 d of exposure to the combined copper and cadmium in aqueous phase, the Cd2+ content in tilapia ovarian tissue increased by 1,242.46% (p < 0.05), whereas the Cu2+ content, body weight, and GSI decreased by 68.48%, 34.46%, and 60.00% (p < 0.05), respectively. Additionally, E2 hormone levels in tilapia serum decreased by 17.55% (p < 0.05). After drug injection and recovery for 7 d, compared to the negative control group, the HCG group exhibited an increase of 39.57% (p < 0.05) in serum vitellogenin levels. Increases of 49.31%, 42.39%, and 45.91% (p < 0.05) in serum E2 levels were observed, and mRNA expression of 3ß-HSD increased by 100.64%, 113.16%, and 81.53% (p < 0.05) in the HCG, LHRH, and E2 groups, respectively. The mRNA expression of CYP11A1 in tilapia ovaries increased by 282.26% and 255.08% (p < 0.05) and mRNA expression of 17ß-HSD increased by 109.35% and 111.63% in the HCG and LHRH groups, respectively (p < 0.05). All four hormonal drugs, particularly HCG and LHRH, promoted the restoration of tilapia ovarian function to varying degrees after injury induced by combined exposure to copper and cadmium. This study presents the first hormonal treatment protocol for the mitigation of ovarian damage in fish exposed to combined aqueous phases of copper and cadmium as a strategy to prevent and treat fish ovarian damage induced by heavy metals.


Assuntos
Ciclídeos , Tilápia , Poluentes Químicos da Água , Humanos , Animais , Feminino , Ovário , Tilápia/metabolismo , Cádmio/metabolismo , Cobre/metabolismo , Poluentes Químicos da Água/toxicidade , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , RNA Mensageiro/metabolismo
6.
Fish Shellfish Immunol ; 131: 323-341, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228879

RESUMO

Artemisia vulgaris (A. vulgaris) is a traditional Chinese medicine widely distributed in China and contains many bioactive compounds with pharmacological effects. However, the anti-inflammatory effects and mechanism of essential oil from A. vulgaris on enteritis in fish are still unclear. In this study, in order to elucidate the underlying mechanism of essential oil from A. vulgaris on zebrafish enteritis, zebrafish were used for establishing animal models to observe the histopathological changes of intestines, determine the activities of immune-related enzymes and oxidative stress indicators, and the mRNA expression of genes in MyD88/TRAF6/NF-KB signaling pathways. The results showed that different doses of A. vulgaris essential oil could effectively alleviate zebrafish enteritis in a dose- and time-dependent manner by improving the intestinal histopathological damage, decreasing the intestinal oxidative stress, repairing the intestinal immune ability, changing the expression levels of IL-1ß, IL-10 and genes in MyD88/TRAF6/NF-κB pathway. In addition, co-treatment with oxazolone and MyD88 inhibitor could alleviate the morphological damage, the induction of oxidative stress, and the levels of immune-related enzymes and the mRNA expression of genes in MyD88/TRAF6/NF-κB signaling pathway. Moreover, essential oil from A. vulgaris had more significantly therapeutic effects on enteritis of male zebrafish than that of female zebrafish. This result will clarify the therapeutic effect and anti-inflammatory mechanism of essential oil from A. vulgaris on zebrafish enteritis, and provide a theoretical basis for further research on the rationality of A. vulgaris to replace feed antibiotics.


Assuntos
Artemisia , Enterite , Óleos Voláteis , Masculino , Feminino , Animais , Peixe-Zebra/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Artemisia/genética , Artemisia/metabolismo , Óleos Voláteis/farmacologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Enterite/tratamento farmacológico , Enterite/veterinária , Enterite/genética , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , RNA Mensageiro/metabolismo
7.
Aquat Toxicol ; 251: 106275, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007351

RESUMO

Ferroptosis plays a key role in fluorosis in aquatic organisms, but whether it is involved in fluoride-induced liver damage remains unclear. Previous studies have indicated that fluoride toxicity has the reversible tendency, but the mechanism of self-recovery after fluorosis in aquatic animals has not been elucidated. In this study, adult zebrafish and embryos were exposed to 0, 20, 40, 80 mg/L of fluoride for 30, 60 and 90 d and 3, 4 and 5 d post-fertilization (dpf), respectively. After 90 d, adult zebrafish were transferred to clean water for self-recovery of 30 d. The results showed that fluoride induced the prominent histopathologial changes in liver of adults, and the developmental delay and dark liver area in larvae. Fluoride significantly increased the iron overload, while decreased the expression levels of transferrin (tf), transferrin receptor (tfr), ferroportin (fpn), membrane iron transporter (fpn), and ferritin heavy chain (fth) in adults and larvae. Fluoride also induced the oxidative stress in adults and larvae by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while decreasing the glutathione (GSH) content and the levels of glutathione peroxidase 4 (gpx4) and solute carrier family 7 member 11 (slc7a11). Self-recovery relieved fluoride-induced ferroptosis by reducing the histopathological damage and oxidative stress, reversing the expression levels of fth and slc7a11, Fe2+ metabolism and GSH synthesis. Lipid peroxidation and Fe2+ metabolism may be the key factor in alleviating effects of self-recovery on fluoride toxicity. Moreover, males are more sensitive than females. Our results provide a theoretical basis for studying the alleviating effects of self-recovery on fluoride toxicity and the underlying mechanism of its protective effect.


Assuntos
Ferroptose , Poluentes Químicos da Água , Animais , Apoferritinas/metabolismo , Apoferritinas/farmacologia , Feminino , Fluoretos/toxicidade , Glutationa/metabolismo , Ferro , Larva , Fígado , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Receptores da Transferrina/metabolismo , Transferrinas/metabolismo , Transferrinas/farmacologia , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo
8.
Sci Total Environ ; 805: 150460, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818796

RESUMO

Cyclophosphamide (CP) is a broad-spectrum anticancer drug and has been frequently detected in aquatic environments due to its incomplete removal by wastewater treatment facilities and slow degradation in waters. Its toxicity in fish remains largely unknown. In this study, zebrafish eggs <4 h post fertilization (hpf) were exposed to CP at the concentrations from 0.5 to 50.0 µg/L until 168 hpf, and its toxicity was evaluated by biochemical, transcriptomic, and behavioral approaches. The results showed that malformation and mortality rates increased with CP concentrations. The 7-day malformation EC50 and mortality (LC30) by CP were calculated to be 86.8 µg/L and 7.5 mg/L, respectively. Inhibited startle response (light to dark) (a minimal of 19%) and reduced swimming velocity (a minimal of 30%) were observed in the CP-exposed larvae. The thicknesses of retinal ganglion layer, inner plexiform layer, and inner nuclear layer in the retina were increased after exposure to CP. Meanwhile, exposure to CP increased karyorrhexis and karyolysis in the liver tissue. Transcriptomic analysis identified 607 differentially expressed genes (DEGs) (159 up-regulated and 448 down-regulated). A significant reduction in the transcripts of sgk1 (the FoxO pathway), jun (the MAPK pathway), and diabloa (apoptosis pathway) were observed in the CP-treated larvae. This study has demonstrated that low concentrations of CP cause malformation, reduced swimming capacity, histopathological alterations in the retina and liver tissues, and interference on transcriptional expressions of key genes associated with different pathways. The ecological risk of CP and other anticancer drugs to aquatic organisms merits future investigation.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Ciclofosfamida/toxicidade , Embrião não Mamífero , Larva , Locomoção , Poluentes Químicos da Água/toxicidade
9.
Fish Shellfish Immunol ; 97: 283-293, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863904

RESUMO

Selenium is an essential element but toxic at high levels in animals. The effects of Se on growth performance and the immune system in Nile tilapia remain inconclusive. In this study, Nile tilapia Oreochromis niloticus was fed on selenium yeast (Se(Y))- and selenite (Se(IV))-enriched feed at 0, 3, 6, and 12 µg/g (dry wt) for 45 and 90 d. The growth, bioaccumulation, biochemical markers related to antioxidant, immunological, nervous and digestive systems were evaluated in various fish tissues (liver, intestine, kidney, muscle, brain, spleen, gills). The results showed that the accumulation of Se(Y) was 1.3-2 folds of Se(IV) in most tissues. The growth of tilapia was enhanced by both Se(Y) and Se(IV) at 3 µg/g after 90 d, with Se(Y) better than Se(IV) in tilapia feed. After 45 d, the levels of lipid peroxidation, the activity of the antioxidant enzymes, and the transcriptional levels of the immune related genes (IL-1ß, IFN-γ and TNF-α) and stress proteins (HSP70 and MT) were enhanced in all treatments, except that of MT in the 12 µg/g Se(Y) group. In addition, both Se species inhibited the activity of acetylcholinesterase (AChE) in the brain and one digestive enzyme α-glucosidase (α-Glu) in the intestine at 12 µg/g. However, after 90 d, the effects on most biochemical markers were less pronounced, implying a possible acclimation after prolonged duration. The results demonstrate Se is beneficial to O. niloticus at low levels and toxic at elevated levels. The immunostimulation by Se might be greatly weakened after long term feeding Se-enriched feed. This study helps to better understand the effects of Se on the antioxidant and immune systems and to establish the optimal Se levels in the feed and duration for O. niloticus.


Assuntos
Antioxidantes/metabolismo , Bioacumulação , Ciclídeos/imunologia , Imunidade Inata/efeitos dos fármacos , Ácido Selenioso/metabolismo , Selênio/metabolismo , Fermento Seco/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Ácido Selenioso/administração & dosagem , Selênio/administração & dosagem , Fatores de Tempo , Fermento Seco/administração & dosagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-31473330

RESUMO

Estradiol (E2) is a sex steroid hormone that modulates multiple physiological processes in teleosts. The aim of this study was to explore the role of E2 in the hepatic lipid metabolism of hybrid tilapia. The hybrid tilapias were injected with different concentrations of E2 (0 mg/kg, 10 mg/kg, 25 mg/kg and 50 mg/kg) and ICI 182,780 (ICI) (35 mg/kg) (an E2 receptor antagonist). Subsequently, the liver lipid depositions were analyzed by tissue sections with oil red O staining. Serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL) and nonesterified fatty acids (NEFAs) were assayed from the fish in different groups. Genes related to very low-density lipoprotein (VLDL) assembly, lipoprotein lipase and lipoprotein receptors, fatty acid uptake and triacylglycerol metabolism were determined by quantitative RT-PCR. The results showed that 50 mg/kg E2 injections enlarged the lipid droplets significantly. Simultaneously, the E2 injections tended to upregulate TC, TG, LDL, and HDL in the serum. The 50 mg/kg E2 group showed a significantly higher expression of the VLDL assembly genes but depressed levels of LDLR and LRP1. In addition, FABP3, FABP11a and DGAT2 were significantly elevated, while CD36 and ACO1 decreased in the 50 mg/kg E2 injection. The ICI injection inhibited the expression of MTP, LPL, LRP1, CD36, FABP11a, ACO1 and FAS in tilapia livers. These results demonstrated that by stimulating the expression of genes associated with the VLDL assembly, inhibiting lipoprotein lipase and lipoprotein receptor-related genes and promoting the rate-limiting enzyme in the synthesis of the TG, E2 induced deposition of lipids in the livers of hybrid tilapia. Overall, the results suggest a role for E2 in fish lipid metabolisms that provide new clues to illustrate the sex steroid function in energy metabolism in livers.


Assuntos
Estradiol/farmacologia , Proteínas de Peixes/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Tilápia/metabolismo , Triglicerídeos/biossíntese , Animais , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Feminino , Proteínas de Peixes/genética , Masculino , Tilápia/genética , Triglicerídeos/genética
11.
Ecotoxicol Environ Saf ; 160: 240-248, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-29843105

RESUMO

Selenite(IV) and selenate(VI) are the major forms of Se in aquatic ecosystem. In this study, Pseudorasbora parva were exposed to 10, 200 and 1000 µg L-1 selenite and selenate for 28 days. Selenium accumulation, antioxidant enzyme levels, glutathione concentrations, lipid peroxidation and histology were evaluated in livers following exposure. Our results showed that Se(IV) and Se(VI) caused different accumulation patterns in the liver, with a more rapid accumulation of Se with Se(IV) treatment. Both Se species increased hepatic lipid peroxidation after 14 and 28 d (~ 30%). Among the antioxidants examined, the activity of SOD (except day 28) and the cellular levels of GSH were induced by 72-137% at lower concentrations, while the activity of GST was at least 24% lower than that of the control at 200 and 1000 µg L-1 for both Se species at all sampling points. Both forms of Se reduced the hepatosomatic index at 1000 µg L-1 after 28 d. In addition, marked histopathological alterations (10-31%) were observed in the liver of P. parva after exposure to both Se species, with higher frequency in the Se(IV) exposed fish. Liver local necrosis was observed only in the liver of fish exposed to 1000 µg L-1 of Se(IV) (~ 20%). Our results suggest that the ecological impacts of dissolved Se in this freshwater species may also contribute to overall toxicity.


Assuntos
Cyprinidae/metabolismo , Fígado/efeitos dos fármacos , Ácido Selênico/toxicidade , Ácido Selenioso/toxicidade , Selênio/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Selênico/farmacocinética , Ácido Selenioso/farmacocinética , Poluentes Químicos da Água/farmacocinética
12.
Aquat Toxicol ; 176: 208-16, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27162070

RESUMO

Chromium (Cr) is an essential metal and a nutritional supplement for both human and agricultural uses. It is also a pollutant from a variety of industrial uses. These uses can lead to elevated Cr levels in aquatic environments, where it can enter and affect aquatic organisms. Its accumulation and subsequent effects in fish have received relatively little attention, especially for chronic exposure. In the present study, Japanese medaka were chronically exposed to dissolved or dietary Cr(VI) for 3 months. Cr accumulation in liver, gills, intestine, and brain was evaluated. Effects on the antioxidant system, nervous system (acetylcholinesterase, AChE), digestive system (α-glucosidase, α-Glu), and tissue histology (liver and gills) were also assessed. Cr accumulation was observed in the intestine and liver of fish exposed to Cr-contaminated brine shrimp. However, chronic dissolved Cr exposure led to significant Cr accumulation in all organs tested. Analysis of the subcellular distribution of Cr in medaka livers revealed that 37% of the Cr was present in the heat stable protein fraction. The dissolved Cr exposure had pronounced effects on the antioxidant system in the liver, with an elevated ratio of reduced glutathione/oxidized glutathione (GSH/GSSG) and decreases in GSH and glutathione S-transferase (GST). The α-Glu activity in the intestine was significantly inhibited. In addition, Cr exposure caused histopathological alterations in the gills and liver. In general, the effects of dietary Cr were relatively minor, possible due to the much lower accumulation in the fish. Our results imply that Japanese medaka accumulate Cr mainly via uptake of dissolved Cr(VI).


Assuntos
Cromo/farmacocinética , Cromo/toxicidade , Oryzias/metabolismo , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Dieta , Feminino , Brânquias/efeitos dos fármacos , Brânquias/patologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , alfa-Glucosidases/metabolismo
13.
Ecotoxicology ; 24(10): 2213-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26471182

RESUMO

Cadmium (Cd) is one of the most toxic heavy metals in aquatic ecosystem which affects fish health and aquaculture. In the present study, we examined the bioaccumulation of Cd in the gonads of tilapia via dissolved and dietary routes. We evaluated the subchronic effects of Cd on the histology of gonads, steroid hormone levels and sex-related gene expressions in tilapia. In addition, we also studied maternal transfer of Cd. Our results indicated that Cd was accumulated significantly in both ovary and testis from both exposure routes. Histopathological analysis showed that Cd induced ovary and testis injuries. Estradiol levels were significantly increased in dissolved Cd exposed female fish. In addition, the Cd exposure displayed different effects on gene expressions in gonads. In females, the estrogen receptor (ERα) was stimulated in dissolved Cd-exposed fish at 70.32 and 143.78 µg/L for 30 days and in fish at 143.78 µg/L for 60 days. Vitellogenin expression was significantly down-regulated in the ovary of dissolved Cd-exposed fish. In testis, GR expression was elevated after 60 days of dissolved Cd and dietary exposure. Furthermore, Cd level was significantly higher in the eggs than that in the fry. Our results demonstrated that both dissolved and dietary Cd exposures affected gonad development by altering steroid hormone levels and sex-related gene expressions in tilapia.


Assuntos
Cádmio/toxicidade , Ciclídeos/metabolismo , Expressão Gênica/efeitos dos fármacos , Hormônios Esteroides Gonadais/sangue , Ovário/patologia , Testículo/patologia , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Ovário/efeitos dos fármacos , Distribuição Aleatória , Testículo/efeitos dos fármacos , Testes de Toxicidade Subcrônica
14.
Ecotoxicol Environ Saf ; 102: 168-73, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24530733

RESUMO

Seafood is considered as the main source of arsenic in the human diet. In this study, we quantified the total arsenic content in 200 samples of 22 species collected from eight cities in Shandong, China. Subsequently, we evaluated the health risks associated with seafood consumption for three consumption scenarios based on the quantification of inorganic arsenic in three commonly consumed seafood species. The bivalves had the highest total arsenic concentrations in three categories of seafood (fish, shrimp, and bivalves) and the mean total arsenic concentrations ranged from 0.037 µg/g ww in fish to 3.4 µg/g in bivalves. The results suggested that organisms which had a closer relationship with sediments may accumulate more arsenic. Bivalves were the major contributor for the arsenic intakes in the seafood consumers. The margins of exposure (MOEs) estimated in the present work showed that there existed a health risk for the consumers. The carcinogen risks exceeded the acceptable range for life cancer risk. Our results suggested that more attention should be paid to the safety of seafood consumption, especially of benthic economic species and for special consumers.


Assuntos
Arsênio/análise , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , Alimentos Marinhos/normas , Poluentes Químicos da Água/análise , Animais , Bivalves/química , China , Peixes , Humanos , Penaeidae/química , Medição de Risco , Frutos do Mar
15.
Gen Comp Endocrinol ; 189: 43-50, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23644155

RESUMO

Piwi proteins as constituent factors of the piRNA pathway are required for germline maintenance, meiosis and gonad development. Previous study showed hCG could regulate the Piwi expression in ovary of teleosts. In this study, we revealed effects of LHRH-A and hCG on Piwi expression in testis of tilapia using Real-time PCR and Western blot. Both in vivo and in vitro study suggest that LHRH-A and hCG significantly down-regulated Piwil-1 and Piwil-2 in mRNA or protein levels compared with controls. Meanwhile, tissue and cell distribution showed that Piwi proteins were mainly expressed in spermatocytes rather than mature sperms. These results indicated that HPG suppresses Piwis which may play a crucial role in testis differentiation and development.


Assuntos
Proteínas Argonautas/metabolismo , Gonadotropina Coriônica/farmacologia , Ciclídeos/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Testículo/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Testículo/efeitos dos fármacos
16.
Chemosphere ; 91(8): 1203-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23415306

RESUMO

Fish take up fluoride directly from water and are the target organisms for fluoride pollution in the aquatic ecosystems. This study was conducted to evaluate oxidative stress, histopathological changes, apoptosis and Bcl-2, Bax expression in the livers of the common carp (Cyprinus carpio) chronically exposed to fluoride. Our results showed that after 90 d of exposure, the inhibition of SOD, GSH activities and a dose-dependent stimulation of MDA levels in the liver tissues indicated that fluoride caused oxidative stress in the fish. Microscopic examinations showed that damages to the liver tissues and cell organelles in the liver tissues increased with exposure concentration. A positive correlation was observed between the apoptosis index and fluoride levels in the livers (r=0.995). There was a negative correlation between the fluoride concentration of water and the expression of Bcl-2, Bcl-2/Bax (r=-0.98, r=-0.96). A positive correlation was showed between the fluoride concentration of water and the expression of Bax (r=0.96) after 90 d of exposure. Our results suggested that the common carp could tolerate relatively high levels of fluoride but adverse effects of fluoride occurred in the livers of the fish after 90 d of exposure. The apoptosis of liver cells had an important causative role in the process of fluoride-induced pathological changes of liver.


Assuntos
Apoptose/fisiologia , Fluoretos/toxicidade , Fígado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Poluentes Químicos da Água/toxicidade , Proteína X Associada a bcl-2/metabolismo , Animais , Carpas , Fígado/metabolismo
17.
Fish Physiol Biochem ; 39(4): 931-40, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23224831

RESUMO

The full length of vasa cDNA in blue tilapia Oreochromis aureus was cloned and sequenced using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Nucleotide sequence analysis revealed that the cDNA contained 2,143 bp and was consisted of a 48-bp 5' untranslated terminal region (5'-UTR), a 157-bp 3' untranslated terminal region (3'-UTR) and a 1,938-bp open reading frame (ORF) which encoded 645 amino acids. Homological protein analysis showed that vasa in O. aureus was highly conserved with Nile tilapia Oreochromis niloticus. Tissue distribution expression analysis indicated that vasa was specifically expressed in the gonads. Using in situ hybridization, we found that vasa was expressed in spermatogonia and spermatocytes rather than spermatids and sperm. In order to examine the influence of luteinizing hormone releasing hormone analog (LHRH-A) on vasa, the in vivo injections were performed different concentrations of LHRH-A. Our results showed that LHRH-A induced meiosis and down-regulated vasa mRNA expression. In summary, our results showed that vasa was specifically expressed in gonads and LHRH-A inhibited vasa expression in the testis. Our results also suggested that LHRH-A could regulate vasa gene expression in O. aureus testis.


Assuntos
RNA Helicases DEAD-box/genética , Proteínas de Peixes/genética , Tilápia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Proteínas de Peixes/antagonistas & inibidores , Proteínas de Peixes/metabolismo , Hormônio Liberador de Gonadotropina/análogos & derivados , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA