Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786825

RESUMO

Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below -10 dB over 7.01~10.11 GHz and a minimum of -14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature.

2.
Clin Chim Acta ; 538: 36-45, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347333

RESUMO

BACKGROUND AND AIMS: The vital metabolic signatures for IA risk stratification and its potential biological underpinnings remain elusive. Our study aimed to develop an early diagnosis model and rupture classification model by analyzing plasma metabolic profiles of IA patients. MATERIALS AND METHODS: Plasma samples from a cohort of 105 participants, including 75 IA patients in unruptured and ruptured status (UIA, RIA) and 30 control participants were collected for comprehensive metabolic evaluation using ultra-high-performance liquid chromatography-mass spectrometry-based pseudotargeted metabolomics method. Furthermore, an integrated machine learning strategy based on LASSO, random forest and logistic regression were used for feature selection and model construction. RESULTS: The metabolic profiling disturbed significantly in UIA and RIA patients. Notably, adenosine content was significantly downregulated in UIA, and various glycine-conjugated secondary bile acids were decreased in RIA patients. Enriched KEGG pathways included glutathione metabolism and bile acid metabolism. Two sets of biomarker panels were defined to discriminate IA and its rupture with the area under receiver operating characteristic curve of 0.843 and 0.929 on the validation sets, respectively. CONCLUSIONS: The present study could contribute to a better understanding of IA etiopathogenesis and facilitate discovery of new therapeutic targets. The metabolite panels may serve as potential non-invasive diagnostic and risk stratification tool for IA.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Humanos , Aneurisma Roto/diagnóstico , Aneurisma Roto/etiologia , Aneurisma Roto/patologia , Biomarcadores , Metabolômica/métodos , Curva ROC
3.
J Ultrasound Med ; 41(11): 2727-2737, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35128699

RESUMO

OBJECTIVES: Sentinel lymph node (SLN) and its lymphatic drainage pattern (LDP) of breast cancer were studied by contrast-enhanced ultrasound (CEUS). METHODS: From July 2017 to December 2019, patients with SLN localization of breast cancer in Sichuan Academy of Medical Sciences·Sichuan Provincial People's Hospital were selected. The sentinel lymph system of breast cancer was observed by CEUS before both operation and blue staining in the surgery. The location, number, and route of sentinel lymphatic channel (SLC) were recorded, along with the number, size, and the depth from skin of SLN. LDPs were summarized according to these basic characteristics of SLC and SLN. RESULTS: A total of 368 cases were included; 465 SLCs and 423 SLNs were detected. Most of the SLCs were originated from the outer upper quadrant of areola. Eleven LDPs were found, including 31 subtypes of LDPs. There were 6 cases of type A (1.63%), 15 cases of type B (4.08%), 223 cases of type C (57.88%), 38 cases of type D (10.33%), 2 cases of type E (0.54%), 3 cases of type F (0.82%), 50 cases of type G (13.59%), 30 cases of type H (8.15%), 2 cases of type I (0.54%), 6 cases of type J (1.63%), and 3 cases of type K (0.82%). CONCLUSIONS: The most common LDP of breast cancer was one SLC originated from the upper quadrant of areola with one SLN. CEUS can identify the LDP before surgery to reduce the false negative rate of SLN biopsy.


Assuntos
Neoplasias da Mama , Linfadenopatia , Linfonodo Sentinela , Humanos , Feminino , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Neoplasias da Mama/patologia , Meios de Contraste , Biópsia de Linfonodo Sentinela , Ultrassonografia , Linfadenopatia/patologia , Linfonodos/patologia , Axila/patologia
4.
J Biophotonics ; 15(4): e202100351, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936211

RESUMO

Mounting evidence suggests that distinct microbial communities reside in tumors and play important roles in tumor physiology. Recently, a previous study profiled the composition and localization of intratumoral bacteria using 16S ribosomal DNA (rDNA) sequencing and histological visualization methods across seven tumor types, including human glioblastoma. However, their results based on traditional histological examinations should be further validated considering potential sources of contamination originating from sample collection and processing. Here, we aim to propose a three-dimensional (3D) in situ intratumoral microbiota visualization and quantification protocol avoiding surface contamination and provide a comprehensive histological investigation on local bacteria within human glioma samples. We develop a 3D quantitative in situ intratumoral microbiota imaging strategy, combining tissue clearing, immunofluorescent labeling, optical sectioning microscopy, and image processing, to visualize bacterial lipopolysaccharide (LPS) within gliomas in a direct, contaminant-free, and unambiguous manner. Through an automated statistical algorithm, reliable signals can be distinguished for further analysis of their sizes, distribution, and fluorescence intensities. In tandem, we also combined 2D images obtained from thin-section histological methods, including immunohistochemistry and fluorescence in situ hybridization, to provide comprehensive histological imaging for local bacterial components within human glioma samples. We have, for the first time, achieved 3D quantitative imaging of bacterial LPS colonized in gliomas in a contamination-free manner within human glioma samples. We also built the multiple histological evidence chain demonstrating the irregular shapes and sparse distribution of bacterial components within human glioma samples, mostly localized near nuclear membranes or in the intercellular space. This study provides favorable evidence for the presence of microbiota in human gliomas and provides information on the feature and distribution of bacterial components. The results, along with the integrated 3D quantitative intratumoral microbiota imaging method, are promising to provide insightful information into the direct interactions between the microbial community and the host in the tumor microenvironment.


Assuntos
Glioblastoma , Glioma , Microbiota , Glioblastoma/patologia , Glioma/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente , Microambiente Tumoral
5.
Nanomedicine ; 12(5): 1205-17, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26772423

RESUMO

UNLABELLED: Self-assembly peptide nanofibrous scaffold (SAPNS), such as RADA16-I, has been shown to reduce acute brain injury and enhance functional recovery in rat intracerebral hemorrhage (ICH) models. The acidic property of RADA16-I, however, limits its application in patients. In the present study, by using a modified neutral SAPNS (the RADA16mix) in collagenase IV induced ICH mice, we detected there were less microglial and apoptotic cells in mice injected with RADA16mix, meanwhile, more cells survived in this group. In addition, behavioral tests indicated that mice treated with RADA16mix showed better functional recovery than RADA16-I. Local delivery of RADA16mix reduces acute brain injury by lowering the number of apoptotic cells, decreasing glial reaction, reducing inflammatory response and, therefore promotes functional recovery. Moreover, new nerve fibers have grown into this new SAPNS, which indicates RADA16mix is able to serve as a bridge for nerve fibers to grow through. FROM THE CLINICAL EDITOR: Acute brain injury, such as intracerebral hemorrhage is a serious problem. In this work, self-assembly peptide nanofibrous scaffold (SAPNS) were tested in a rat model to aid functional recovery. Several items have been considered, such as histology, brain water content, hematoma volume, cell death and survival, inflammatory response, and nerve fiber growth. The positive data generated should pave the way towards better treatment options.


Assuntos
Hemorragia Cerebral/terapia , Nanofibras , Peptídeos/administração & dosagem , Animais , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA