Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(3): 775-784, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815489

RESUMO

BACKGROUND: Pneumonia is a common cause of morbidity and mortality, yet a causative pathogen is identified in a minority of cases. Plasma microbial cell-free DNA sequencing may improve diagnostic yield in immunocompromised patients with pneumonia. METHODS: In this prospective, multicenter, observational study of immunocompromised adults undergoing bronchoscopy to establish a pneumonia etiology, plasma microbial cell-free DNA sequencing was compared to standardized usual care testing. Pneumonia etiology was adjudicated by a blinded independent committee. The primary outcome, additive diagnostic value, was assessed in the Per Protocol population (patients with complete testing results and no major protocol deviations) and defined as the percent of patients with an etiology of pneumonia exclusively identified by plasma microbial cell-free DNA sequencing. Clinical additive diagnostic value was assessed in the Per Protocol subgroup with negative usual care testing. RESULTS: Of 257 patients, 173 met Per Protocol criteria. A pneumonia etiology was identified by usual care in 52/173 (30.1%), plasma microbial cell-free DNA sequencing in 49/173 (28.3%) and the combination of both in 73/173 (42.2%) patients. Plasma microbial cell-free DNA sequencing exclusively identified an etiology of pneumonia in 21/173 patients (additive diagnostic value 12.1%, 95% confidence interval [CI], 7.7% to 18.0%, P < .001). In the Per Protocol subgroup with negative usual care testing, plasma microbial cell-free DNA sequencing identified a pneumonia etiology in 21/121 patients (clinical additive diagnostic value 17.4%, 95% CI, 11.1% to 25.3%). CONCLUSIONS: Non-invasive plasma microbial cell-free DNA sequencing significantly increased diagnostic yield in immunocompromised patients with pneumonia undergoing bronchoscopy and extensive microbiologic and molecular testing. CLINICAL TRIALS REGISTRATION: NCT04047719.


Assuntos
Pneumonia , Adulto , Humanos , Estudos Prospectivos , Pneumonia/etiologia , Análise de Sequência de DNA , Hospedeiro Imunocomprometido
2.
FASEB J ; 31(5): 2090-2103, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28179424

RESUMO

Folate B12-dependent remethylation of homocysteine is important, but less is understood about the importance of the alternative betaine-dependent methylation pathway-catalyzed by betaine-homocysteine methyltransferase (BHMT)-for establishing and maintaining adequate DNA methylation across the genome. We studied C57Bl/6J Bhmt (betaine-homocysteine methyltransferase)-null mice at age 4, 12, 24, and 52 wk (N = 8) and observed elevation of S-adenosylhomocysteine concentrations and development of preneoplastic foci in the liver (increased placental glutathione S-transferase and cytokeratin 8-18 activity; starting at 12 wk). At 4 wk, we identified 63 differentially methylated CpGs (DMCs; false discovery rate < 5%) proximal to 81 genes (across 14 chromosomes), of which 18 were differentially expressed. Of these DMCs, 52% were located in one 15.5-Mb locus on chromosome 13, which encompassed the Bhmt gene and defined a potentially sensitive region with mostly decreased methylation. Analyzing Hybrid Mouse Diversity Panel data, which consisted of 100 inbred strains of mice, we identified 97 DMCs that were affected by Bhmt genetic variation in the same region, with 7 overlapping those found in Bhmt-null mice (P < 0.001). At all time points, we found a hypomethylated region mapping to Iqgap2 (IQ motif-containing GTPase activating protein 2) and F2rl2 (proteinase-activated receptor-3), 2 genes that were also silenced and underexpressed, respectively.-Lupu, D. S., Orozco, L. D., Wang, Y., Cullen, J. M., Pellegrini, M., Zeisel, S. H. Altered methylation of specific DNA loci in the liver of Bhmt-null mice results in repression of Iqgap2 and F2rl2 and is associated with development of preneoplastic foci.


Assuntos
Metilação de DNA , DNA/metabolismo , Ácido Fólico/metabolismo , Fígado/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores de Trombina/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Betaína-Homocisteína S-Metiltransferase/deficiência , Betaína-Homocisteína S-Metiltransferase/metabolismo , Metilação de DNA/fisiologia , Glutationa Transferase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Trombina/genética , Proteínas Ativadoras de ras GTPase/genética
3.
Int J Dev Neurosci ; 36: 38-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866706

RESUMO

Many animal and human studies indicated that dietary ω-3 fatty acids could have beneficial roles on brain development, memory, and learning. However, the exact mechanisms involved are far from being clearly understood, especially for α-linolenic acid (ALA), which is the precursor for the ω-3 elongation and desaturation pathways. This study investigated the alterations induced by different intakes of flaxseed oil (containing 50% ALA), during gestation and lactation, upon the expression of genes involved in neurogenesis, memory-related molecular processes, and DNA methylation, in the brains of mouse offspring at the end of lactation (postnatal day 19, P19). In addition, DNA methylation status for the same genes was investigated. Maternal flaxseed oil supplementation during lactation increased the expression of Mecp2, Ppp1cc, and Reelin, while decreasing the expression of Ppp1cb and Dnmt3a. Dnmt1 expression was decreased by postnatal flaxseed oil supplementation but this effect was offset by ALA deficiency during gestation. Mecp2 DNA methylation was decreased by maternal ALA deficiency during gestation, with a more robust effect in the lactation-deficient group. In addition, linear regression analysis revealed positive correlations between Mecp2, Reelin, and Ppp1cc, between Gadd45b, Bdnf, and Creb1, and between Egr1 and Dnmt1, respectively. However, there were no correlations, in any gene, between DNA methylation and gene expression. In summary, the interplay between ALA availability during gestation and lactation differentially altered the expression of genes involved in neurogenesis and memory, in the whole brain of the offspring at the end of lactation. The Mecp2 epigenetic status was correlated with ALA availability during gestation. However, the epigenetic status of the genes investigated was not associated with transcript levels, suggesting that either the regulation of these genes is not necessarily under epigenetic control, or that the whole brain model is not adequate for the exploration of epigenetic regulation in the context of this study.


Assuntos
Encéfalo , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/genética , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ácido alfa-Linolênico/toxicidade , Análise de Variância , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Masculino , Memória/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Proteína Reelina , Estatística como Assunto
4.
Curr Opin Clin Nutr Metab Care ; 14(1): 35-40, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21088573

RESUMO

PURPOSE OF REVIEW: This review synthesizes recently published information regarding nutrition and its impact upon epigenetically mediated mechanisms involved in longevity and aging. RECENT FINDINGS: Recent studies enriched considerably our understanding of the relationship between aging and gene-nutrient interactions that continuously shape our phenotype. Epigenetic mechanisms play an important role in mediating between the nutrient inputs and the ensuing phenotypic changes throughout our entire life and seem to be responsible, in part, for the biological changes that occur during aging. Less is known about the epigenetic role that nutrients have in directly influencing longevity and aging. However, recent studies clearly indicated that because nutrition modulates epigenetic events associated with various diseases (e.g., cancer, obesity, and diabetes), there is at least an indirect epigenetic link between nutrition and longevity and, therefore, biologic plausibility to hypothesize the epigenetic role of nutrition in altering longevity. Apart from limited human studies, promising animal studies brought us much closer to understanding how nutrition could have such an impact upon longevity and aging. SUMMARY: Complex epigenetic mechanisms are involved in aging and longevity, directly or indirectly via disease mechanisms. Nutrition has a strong impact upon epigenetic processes and, therefore, holds promise in having important roles in regulating longevity and aging.


Assuntos
Envelhecimento/genética , Dieta , Epigênese Genética , Longevidade/genética , Nutrigenômica , Animais , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA