Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Chemosphere ; 313: 137358, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427587

RESUMO

The aim of the present study was to evaluate whether early postnatal exposure to a glyphosate-based herbicide (GBH) alters pre-pubertal mammary development in Friesian lambs. To this end, from postnatal day 1-14, ewe lambs were exposed subcutaneously or orally to GBH (2 mg/kg bw/day) or vehicle (control) and mammary gland biopsies were obtained at 45 days of age. GBH-exposed lambs exhibited larger mammary ducts and less area occupied by terminal duct lobular units than controls, accompanied by an increase in the area of adipocytes in the mammary stroma. Lambs subcutaneously exposed to GBH showed increased protein expression of estrogen receptor alpha; however, both GBH-exposed groups had decreased mRNA expression of this receptor. Control lambs showed nuclear progesterone receptor (PR) protein expression, whereas GBH-exposed animals showed cytoplasmic PR expression; both GBH-exposed groups exhibited decreased mRNA expression of PR. GBH-exposed lambs also had decreased epithelial cell proliferation. Regarding insulin-like growth factors, both groups showed similar IGF-1 mRNA and protein expression but decreased expression of its receptor, and increased IGFBP5 expression. In addition, phosphorylated AKT was only observed in the mammary gland of control lambs. Our results show that early postnatal exposure to GBH, regardless of the exposure route, affects the IGF-1 system and the AKT/protein kinase B pathway, interfering with steroid hormone receptor expression and cell proliferation. This consequently modifies the growth and development of the pre-pubertal mammary gland of Frisian lambs.


Assuntos
Herbicidas , Fator de Crescimento Insulin-Like I , Animais , Feminino , Ratos , Proliferação de Células , Herbicidas/toxicidade , Fator de Crescimento Insulin-Like I/genética , Progesterona , Proteínas Proto-Oncogênicas c-akt , Ratos Wistar , Receptores de Progesterona , RNA Mensageiro , Ovinos , Glândulas Mamárias Animais/metabolismo , Glifosato
2.
Environ Pollut ; 296: 118729, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953950

RESUMO

Glyphosate-based herbicides (GBHs) are the agrochemicals most used around the globe. However, they might have adverse effects on human and animal health. Previously, we showed that female rats neonatally exposed to GBHs exhibit altered expression of morphogenetic molecules and biomarkers of uterine development. We also observed a reduction in the size of implantation sites, altered expression of decidualization-related molecules, and increased post-implantation losses. Since decidualization comprises morphogenetic, biochemical and vascular changes, here we investigated the effects of neonatal GBH exposure on uterine angiogenesis in neonatal and pregnant rats. To achieve this, Wistar female rats were exposed to saline solution or GBH (2 mg glyphosate/kg-bw/day) on post-natal days (PND) 1, 3, 5 and 7. On PND8, uterine samples were collected for developmental studies. On PND90, the remaining females were mated and in the morning of gestational day (GD) 9, the implantation sites were collected. Angiogenesis-related molecules and cells involved in this process were identified and/or measured by immunohistochemistry or RT-PCR. On PND8, GBH-treated rats showed increased vascular endothelial growth factor (VEGF) expression and decreased Notch1, inducible nitric oxide synthase (iNOS) and Angiopoietin-2 (Ang2) mRNA levels. Vascular area, vessel diameter, endothelial cell proliferation, VEGF and Nestin protein expression, and VEGF, Notch1, iNOS and cyclooxygenase-2 (Cox-2) genes were downregulated in implantation sites of exposed females, while Ang2, VEGF receptor 1 and interleukin-10 (IL-10) were increased. Mast cells and macrophages were increased on PND8 and GD9 of treated rats. The increased Transforming growth factor-beta expression in the antimesometrial zone and IL-10 mRNA expression suggest that the M2 type is the predominant population of macrophages on implantation sites. In conclusion, neonatal GBH exposure alters the expression of angiogenesis-related molecules at neonatal uterine development and decidual reaction, suggesting altered vascular support. These alterations might contribute to the increased post-implantation losses observed in GBH-treated rats.


Assuntos
Herbicidas , Animais , Feminino , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Gravidez , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular , Glifosato
3.
Methods Mol Biol ; 2240: 103-117, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423230

RESUMO

The developing uterus is highly sensitive to a brief exposure to different substances, in particular those with endocrine-disrupting activity. Thus, exposure to environmental, nutritional, chemical, and other xenobiotic factors affecting signaling events during critical organizational periods can alter the normal course of uterine development with lasting consequences. In this chapter, we provide an experimental protocol to evaluate the development of the rat uterus as a toxicity biomarker at two different developmental time points: (1) the neonatal period, on postnatal day (PND) 8, and (2) the prepubertal period, on PND21. In this experimental approach, we propose to assess: (1) uterine morphology and cytodifferentiation, (2) uterine cell proliferation, and (3) the expression of proteins involved in uterine organogenetic differentiation. All these morphological and molecular markers are useful tools to determine the consequences of exposure to toxicants with the potential to disrupt the uterine development.


Assuntos
Testes de Toxicidade , Útero/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Imuno-Histoquímica , Microscopia , Organogênese/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar , Útero/metabolismo , Útero/patologia
4.
Mol Cell Endocrinol ; 518: 110934, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659439

RESUMO

Numerous evidences have alerted on the toxic effects of the exposure to glyphosate on living organisms. Glyphosate is the herbicide most used in crops such as maize and soybean worldwide, which implies that several non-target species are at a high risk of exposure. Although the Environmental Protection Agency (EPA-USA) has reaffirmed that glyphosate is safe for users, there are controversial studies that question this statement. Some of the reported effects are due to exposure to high doses; however, recent evidences have shown that exposure to low doses could also alter the development of the female reproductive tract, with consequences on fertility. Different animal models of exposure to glyphosate or glyphosate-based herbicides (GBHs) have shown that the effects on the female reproductive tract may be related to the potential and/or mechanisms of actions of an endocrine-disrupting compound. Studies have also demonstrated that the exposure to GBHs alters the development and differentiation of ovarian follicles and uterus, affecting fertility when animals are exposed before puberty. In addition, exposure to GBHs during gestation could alter the development of the offspring (F1 and F2). The main mechanism described associated with the endocrine-disrupting effect of GBHs is the modulation of estrogen receptors and molecules involved in the estrogenic pathways. This review summarizes the endocrine-disrupting effects of exposure to glyphosate and GBHs at low or "environmentally relevant" doses in the female reproductive tissues. Data suggesting that, at low doses, GBHs may have adverse effects on the female reproductive tract fertility are discussed.


Assuntos
Disruptores Endócrinos/toxicidade , Fertilidade/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/fisiologia , Feminino , Genitália Feminina/efeitos dos fármacos , Genitália Feminina/embriologia , Genitália Feminina/crescimento & desenvolvimento , Glicina/química , Glicina/toxicidade , Herbicidas/química , Humanos , Infertilidade Feminina/induzido quimicamente , Infertilidade Feminina/epidemiologia , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Glifosato
5.
Food Chem Toxicol ; 143: 111560, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32640336

RESUMO

We investigated the effects of perinatal exposure to a glyphosate-based herbicide (GBH) or glyphosate alone (Gly) on female fertility and the hormonal and uterine milieu during the preimplantation period. F0 pregnant rats orally received a GBH or Gly in a dose of 2 mg of glyphosate/kg/day from gestational day (GD) 9 until weaning. F1 females were evaluated to determine the reproductive performance on GD19; and the sex steroid serum levels, the expression of estrogen receptor alpha (ERα), progesterone receptor (PR) and implantation-related genes on GD5 (preimplantation period). GBH and Gly induced preimplantation losses in F1 rats. GBH and Gly groups exhibited higher 17ß-estradiol serum levels, without changes in progesterone. Both compounds increased the uterine ERα protein expression, with no differences at transcript level; and only Gly decreased PR mRNA expression. Also, GBH and Gly downregulated Hoxa10 and Lif genes, with no difference in Muc1 and Areg expression. To conclude, perinatal exposure to a GBH or Gly disrupted critical hormonal and uterine molecular targets during the receptive state, possibly associated with the implantation failures. Overall, similar results were found in GBH- and Gly-exposed rats, suggesting that the active principle might be the main responsible for the deleterious effects.


Assuntos
Implantação do Embrião/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Hormônios/metabolismo , Útero , Animais , Animais Recém-Nascidos , Estro , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicina/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Reprodução/efeitos dos fármacos , Glifosato
6.
Mol Cell Endocrinol ; 499: 110614, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606416

RESUMO

Bisphenol A (BPA) is a compound used in the polymerization of plastic polycarbonates. It is an endocrine disruptor and it has been postulated to be an obesogen. Our objective was to determine the influence of perinatal exposure to BPA on body weight, hormone levels, metabolic parameters and hypothalamic signals that regulate food intake and kisspeptin system in adult male rats. Male rats were exposed to 50 µg/kg/day of BPA or vehicle from day 9 of gestation to weaning in the drinking water. Since weaning, they were fed with control or high fat diet for 20 weeks. Perinatal exposure to BPA impaired glucose homeostasis, induced obesity and increased food intake in adult male rats altering hypothalamic signals, partially mimicking and/or producing an exacerbation of the effects of feeding fat diet. We also observed an increase in kisspeptin expression by BPA exposure. Evidences shown in this work support the metabolic disruptor hypothesis for BPA.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Kisspeptinas/metabolismo , Obesidade/induzido quimicamente , Fenóis/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Masculino , Obesidade/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos
7.
Food Chem Toxicol ; 134: 110832, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31550491

RESUMO

Endosulfan and glyphosate are widely used pesticides and have been associated to reproductive disorders. We examine the acute and long-term effects of postnatal exposure to commercial formulations of endosulfan (EF), glyphosate (glyphosate-based herbicide, GBH) and a mixture of both pesticides (MIX). After birth, female pups of Wistar rats received saline solution (CONTROL), EF (600 µg/kg of b.w/day), GBH (2 mg/kg of b.w/day) or a mixture (at the same doses) from postnatal day (PND) 1 to PND7. The uterine histology and expression of Hoxa10, estrogen (ERα) and progesterone (PR) receptors were evaluated on PND8. Reproductive performance was evaluated on gestational day 19. GBH and MIX rats showed an increment of 1) the incidence of luminal epithelial hyperplasia, 2) PR and Hoxa10 expression. EF modified ERα and Hoxa10 expression. During adulthood, MIX and GBH rats showed higher post-implantation losses while EF alone produced an increase of pre-implantation losses. We showed that the co-administration of both pesticides produced acute uterine effects and long-term deleterious reproductive effects that were similar to those induced by GBH alone. We consider important to highlight the necessity to evaluate the commercial pesticide mixture as a more representative model of human exposure to a high number of pesticides.


Assuntos
Endossulfano/toxicidade , Glicina/análogos & derivados , Herbicidas/toxicidade , Inseticidas/toxicidade , Útero/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Feminino , Glicina/toxicidade , Proteínas/metabolismo , Ratos , Ratos Wistar , Útero/anatomia & histologia , Útero/metabolismo , Glifosato
8.
Mol Cell Endocrinol ; 480: 133-141, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30391669

RESUMO

Previously, we have shown that perinatal exposure to a glyphosate-based herbicide (GBH) induces implantation failures in rats. Estrogen receptor alpha (ERα) is critical for successful implantation. ERα transcription is under the control of five promoters (E1, OT, O, ON, and OS), which yield different transcripts. Here, we studied whether perinatal exposure to a GBH alters uterine ERα gene expression and prompts epigenetic modifications in its regulatory regions during the preimplantation period. Pregnant rats (F0) were orally treated with 350 mg glyphosate/kg bw/day through food from gestational day (GD) 9 until weaning. F1 females were bred, and uterine samples were collected on GD5 (preimplantation period). ERα mRNA levels and its transcript variants were evaluated by RT-qPCR. Enzyme-specific restriction sites and predicted transcription factors were searched in silico in the ERα promoter regions to assess the methylation status using the methylation-sensitive restriction enzymes-PCR technique. Post-translational modifications of histones were studied by the chromatin immunoprecipitation assay. GBH upregulated the expression of total ERα mRNA by increasing the abundance of the ERα-O transcript variant. In addition, different epigenetic changes were detected in the O promoter. A decrease in DNA methylation was observed in one of the three sites evaluated in the O promoter. Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation (H3K9me3) were enriched in the O promoter in GBH-exposed rats, whereas H3K27me3 was decreased. All these alterations could account for the increase in ERα gene expression. Our findings show that perinatal exposure to a GBH causes long-term epigenetic disruption of the uterine ERα gene, which could be associated with the GBH-induced implantation failures.


Assuntos
Implantação do Embrião/genética , Epigênese Genética , Receptor alfa de Estrogênio/genética , Glicina/análogos & derivados , Herbicidas/toxicidade , Útero/metabolismo , Animais , Sítios de Ligação , Simulação por Computador , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Implantação do Embrião/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genoma , Glicina/toxicidade , Histonas/metabolismo , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Útero/efeitos dos fármacos , Glifosato
9.
J Endocrinol ; 2018 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-30121576

RESUMO

In a previous work, we detected that postnatal exposure to a glyphosate-based herbicide (GBH) alters uterine development in prepubertal rats causing endometrial hyperplasia and increasing cell proliferation. Our goal was to determine whether exposure to low-dose of a GBH during postnatal development might enhance the sensitivity of the uterus to an estrogenic treatment. Female Wistar pups were subcutaneously injected with saline solution (control) or GBH using the reference dose (2 mg/kg/day, EPA) on postnatal days (PND) 1, 3, 5, and 7. At weaning (PND21), female rats were bilaterally ovariectomized and treated with silastic capsules containing 17ß-estradiol (E2, 1mg/ml) until they were two months of age. On PND60, uterine samples were removed and processed for histology, immunohistochemistry and mRNA extraction to evaluate: i) uterine morphology, ii) uterine cell proliferation by the detection of Ki67, iii) the expression of the estrogen receptors alpha (ESR1) and beta (ESR2), and iv) the expression of WNT7A and ß-catenin. GBH-exposed animals showed increased luminal epithelial height and stromal nuclei density. The luminal and glandular epithelium were markedly hyperplastic in 43% of GBH-exposed animals. GBH exposure caused an increase in E2-induced cell proliferation in association with an induction of both ESR1 and ESR2. GBH treatment decreased membranous and cytoplasmic expression of ß-catenin in luminal and glandular epithelial cells and increased WNT7A expression in the luminal epithelium. These results suggest that early postnatal exposure to a GBH enhances the sensitivity of the rat uterus to estradiol, and induces histomorphological and molecular changes associated with uterine hyperplasia.

10.
Food Chem Toxicol ; 118: 111-118, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29746933

RESUMO

Our aim was to evaluate whether postnatal exposure to a glyphosate-based herbicide (GBH) modifies mammary gland development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48 h with either saline solution (vehicle) or 2 mg GBH/kg·bw. On PND21 and PND60, mammary gland and blood samples were collected. Estradiol (E2) and testosterone (T) serum levels, mammary gland histology, collagen fiber organization, mast cell infiltration, proliferation index, and estrogen (ESR1) and androgen receptor (AR) expression levels were evaluated. At PND21, GBH-exposed male rats exhibited greater development of the mammary gland with increased stromal collagen organization and terminal end buds (TEBs) compared to control rats. At PND60, the number of TEBs remained high and was accompanied by an increase in mast cell infiltration, proliferation and ESR1 expression in GBH-exposed male rats. In contrast, no effects were observed in E2 and T serum levels and AR expression in both days studied. Our results showed that a postnatal subacute treatment with GBH induces endocrine-disrupting effects in the male mammary gland in vivo, altering its normal development.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Proliferação de Células , Estradiol/sangue , Receptor alfa de Estrogênio/metabolismo , Feminino , Glicina/toxicidade , Masculino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Mastócitos/citologia , Ratos Wistar , Receptores Androgênicos/metabolismo , Maturidade Sexual , Testosterona/sangue , Testes de Toxicidade Subaguda , Glifosato
11.
Gen Comp Endocrinol ; 259: 176-188, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197555

RESUMO

Caiman latirostris is a species with temperature dependent sex determination (TSD), which implies that the incubation temperature of the eggs is the main factor that determines the sex during a thermo-sensitive period (TSP). However, estrogens play a critical role in this process. The administration of 17ß-estradiol (E2) previous to TSP overrides the effects of male incubation temperature, producing phenotypic females. This effect has been defined as sex reversal or estrogen-induced sex determination (E2SD). The aim of the present study is to describe similarities and differences in the effects of TSD and E2SD treatment conditions on ovary development. Our results show that the two treatment conditions studied are able to produce different ovaries. Treatment with E2 modified the expression pattern of estrogen receptor alpha and progesterone receptor, and expression of the enzyme aromatase. Moreover, in E2SD females, the proliferation/apoptosis dynamic was also altered and high expression of TAp63 was observed suggesting the presence of greater DNA damage in germ cells. To the best of our knowledge, this is the first report that describes the morphology of the female gonad of C. latirostris in three stages of embryonic development and shows the expression of TAp63 during the gonad development of a reptile. It is important to emphasize that the changes demonstrated in E2SD female gonads of embryos show that environmental compounds with proven estrogenic activity alter the follicular dynamics of C. latirostris in neonatal as much as in juvenile animals, endangering their reproductive health and possibly bringing consequences to ecology and evolution.


Assuntos
Jacarés e Crocodilos , Estrogênios/metabolismo , Ovário/fisiologia , Diferenciação Sexual/genética , Animais , Feminino , Processos de Determinação Sexual/efeitos dos fármacos , Temperatura
12.
Mol Cell Endocrinol ; 470: 208-218, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29113830

RESUMO

The aim of this study was to evaluate the episodic-like memory (ELM) and the transcriptional regulation of the enzymes involved in hippocampal allopregnanolone synthesis in young adult and middle-aged male and female rats. Young adult males, but not middle-aged ones, showed a good performance in the ELM task. In contrast, neither young nor middle-aged females were able to discriminate the spatial order in which the objects were presented. In females, aging decreased the transcription of steroidogenic-related genes. In addition, the mRNA levels of 5α-reductase-1 were higher and the methylation of its promoter was lower in young adult females than in males, suggesting an epigenetic control. Further studies are needed to establish correlations between ELM and the transcriptional regulation of hippocampal steroidogenic enzymes. Our results contribute to the knowledge of sex differences in gene expression, methylation and memory during aging.


Assuntos
Envelhecimento/genética , Regulação da Expressão Gênica , Hipocampo/enzimologia , Memória Episódica , Transcrição Gênica , Animais , Metilação de DNA/genética , Estradiol/sangue , Feminino , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Esteroides/metabolismo , Análise e Desempenho de Tarefas , Testosterona/sangue
13.
Toxicol Lett ; 281: 102-109, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28935589

RESUMO

Our aim was to evaluate whether postnatal exposure to endosulfan (ENDO) modifies mammary gland (MG) development in pre- and post-pubertal male rats. From postnatal day 1 (PND1) to PND7, male rats were injected subcutaneously every 48h with either corn oil (vehicle) or 600µg ENDO/kg.bw. On PND21 and PND60, MG and blood samples were collected. Estradiol (E2) and testosterone (T) serum levels, MG histology, collagen fiber organization, proliferation index, and estrogen (ESR1) and androgen receptor (AR) expressions were evaluated. On PND21, E2 and T levels were similar between groups, whereas MG area, perimeter, number of terminal end buds and ESR1 expression were increased in ENDO-exposed rats. These changes were associated with alveolar development and increased organized collagen in the stroma. On PND60, a higher proliferation index in ENDO-exposed rats was correlated with a more developed lobuloalveolar structure. Hyperplastic alveoli and, hyperplastic ducts surrounded by a dense stroma were also observed in this group. T levels and ESR1 expression were similar between groups, whereas E2 levels and AR expression were decreased in ENDO-exposed rats. The exposure to ENDO in the first week of life interferes with the normal development of the MG and induces pre-malignant lesions in post-pubertal male rats.


Assuntos
Endossulfano/toxicidade , Glândulas Mamárias Animais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Endossulfano/sangue , Estradiol/sangue , Hiperplasia/sangue , Hiperplasia/induzido quimicamente , Masculino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Ratos , Ratos Wistar , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Testosterona/sangue , Receptor ERRalfa Relacionado ao Estrogênio
14.
Gen Comp Endocrinol ; 254: 75-85, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28947387

RESUMO

Recently, we have described the ontogeny of histofunctional differentiation changes in the oviduct of Caiman latirostris. The expression of estrogen receptor alpha and progesterone receptor shows that the caiman oviduct could be a target of the action of xenoestrogens such as the widely environmentally present Bisphenol A (BPA), early in life. The aims of this study were: to complement oviduct characterization by establishing the ontogenetic changes in androgen receptor (AR) expression and assessing the effects of early postnatal exposure to 17-ß-estradiol (E2) or BPA on the histofunctional features of the oviduct. AR was expressed in all the stages studied. The spatial pattern of AR immunostaining changed from neonatal to juvenile caimans. In the luminal epithelium, changes were at the subcellular level, from cytoplasmic to nuclear. In the subepithelium, although both cytoplasmic and nuclear AR expression was observed, changes were mainly at tissue level, from the subepithelial compartment to the outer muscular layer. The oviduct was highly sensitive to E2 and BPA at the early postnatal developmental stage. E2- and BPA-exposed caimans showed increased luminal epithelial height and higher proliferative activity. Changes in histomorphological features (measured by a scoring system), steroid hormone receptors, collagen remodeling and muscle-associated proteins suggest a precocious oviduct histofunctional differentiation in E2- and BPA-exposed caimans. The modification of the temporal pattern of oviductal biomarkers suggests that organizational changes could impair C. latirostris reproductive health later in life. The alterations in the caiman female reproductive tract exposed to BPA highlight the importance of preserving aquatic environments from plastic pollution.


Assuntos
Jacarés e Crocodilos/metabolismo , Compostos Benzidrílicos/toxicidade , Genitália Feminina/metabolismo , Genitália Feminina/patologia , Fenóis/toxicidade , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Estradiol/farmacologia , Feminino , Proteínas Musculares/metabolismo , Oviductos/efeitos dos fármacos , Oviductos/metabolismo , Receptores Androgênicos/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Tempo
15.
Reprod Toxicol ; 73: 87-95, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28780397

RESUMO

We investigated whether defective modulation of uterine signaling may cause decidualization failure in rats neonatally exposed to a glyphosate-based herbicide (GBH). Female pups received vehicle or 2mg/kg of GBH from postnatal day (PND) 1 to PND7. On PND8 and PND21, Wnt5a and ß-catenin expression was evaluated in uterine samples. On gestational day (GD) 9, Wnt5a, Wnt7a and ß-catenin expression and Dkk1 and sFRP4 mRNA were evaluated on implantation sites. On PND8, GBH-exposed rats showed increased Wnt5a and ß-catenin expression in luminal epithelium (LE), whereas on PND21, they showed increased Wnt5a and ß-catenin expression in subepithelial stroma but decreased ß-catenin expression in glandular epithelium. On GD9, GBH-exposed rats showed decreased Wnt5a and Wnt7a expression in the antimesometrial zone and LE respectively, without changes in ß-catenin expression, while Dkk1 and sFRP4 were up- and down-regulated respectively. We concluded that neonatal GBH exposure may lead to embryo losses by disturbing uterine signaling.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Útero/efeitos dos fármacos , Animais , Feminino , Glicina/toxicidade , Peptídeos e Proteínas de Sinalização Intercelular/genética , Troca Materno-Fetal , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Ratos Wistar , Proteínas Ribossômicas/genética , Transdução de Sinais/efeitos dos fármacos , Útero/metabolismo , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , beta Catenina/metabolismo , Glifosato
16.
Mol Cell Endocrinol ; 454: 1-11, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559116

RESUMO

High ERα activity may disrupt the window of uterine receptivity, causing defective implantation. We investigated whether implantation failures prompted by endosulfan are associated with aberrant ERα uterine expression and DNA methylation status during the pre-implantation period. ERα-dependent target genes that play a crucial role in the uterine receptivity for embryo attachment and implantation were also investigated. Newborn female rats received corn oil (vehicle, Control), 6 µg/kg/d of endosulfan (Endo6) or 600 µg/kg/d of endosulfan (Endo600) on postnatal days (PND) 1, 3, 5, and 7. On PND90, females were made pregnant and on gestational day 5 (GD5, pre-implantation period) uterine samples were collected. ERα expression was assessed at protein and mRNA levels by immunohistochemistry and real time RT-PCR, respectively. ERα transcript variants mRNA containing alternative 5'-untranslated regions (5'UTRs) were also evaluated. We searched for predicted transcription factors binding sites in ERα regulatory regions and assessed their methylation status by Methylation-Sensitive Restriction Enzymes-PCR technique (MSRE-PCR). The expression of the ERα-dependent uterine target genes, i.e. mucin-1 (MUC-1), insulin-like growth factor-1 (IGF-1), and leukemia inhibitory factor (LIF), was assessed by real time RT-PCR. Both doses of endosulfan increased the expression of ERα and its transcript variants ERα-OS, ERα-O, ERα-OT and ERα-E1. Moreover, a decreased DNA methylation levels were detected in some ERα regulatory regions, suggesting an epigenetic up-regulation of it transcription. ERα overexpression was associated with an induction of its downstream genes, MUC-1 and IGF-1, suggesting that endosulfan might alter the uterine estrogenic pathway compromising uterine receptivity. These alterations could account, at least in part, for the endosulfan-induced implantation failures.


Assuntos
Disruptores Endócrinos/toxicidade , Endossulfano/toxicidade , Epigênese Genética/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Fertilidade/genética , Útero/metabolismo , Regiões 5' não Traduzidas/genética , Animais , Animais Recém-Nascidos , Sítios de Ligação , Simulação por Computador , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Implantação do Embrião/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Fertilidade/efeitos dos fármacos , Genoma , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Transcrição Gênica/efeitos dos fármacos , Útero/efeitos dos fármacos
17.
Horm Cancer ; 8(2): 78-89, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28078498

RESUMO

The development of the mammary gland is a hormone-regulated event. Several factors can dysregulate its growth and make the gland more susceptible to cellular transformation. Among these factors, perinatal exposure to xenoestrogens and hormone replacement therapy has been associated with increased risk of developing breast cancer. Here, we assessed the effects induced by estrogen replacement therapy (ERT) in ovariectomized (OVX) middle-aged rats and whether perinatal exposure to diethylstilbestrol (DES) or bisphenol A (BPA) modified these effects in the mammary gland. Pregnant rats were orally exposed to vehicle, 5 µg DES/kg/day, or 0.5 or 50 µg BPA/kg/day from gestational day 9 until weaning. Then, 12-month-old offspring were OVX and treated with 17ß-estradiol for 3 months. Morphological changes and the percentage of epithelial cells that proliferated or expressed estrogen receptor alpha (ESR1) and progesterone receptor (PR) were analyzed in mammary gland samples of 15-month-old animals. ERT induced lobuloalveolar hyperplasia and ductal cysts in the mammary gland of middle-aged rats, associated with a higher proliferation index of epithelial cells. Perinatal exposure to DES followed by ERT increased the number of cysts and induced the formation of fibroadenoma and ductal carcinoma in situ, without modifying the expression of ESR1 or PR. Also, after 3 months of ERT, BPA-exposed rats had a higher incidence of ductal hyperplasia and atypical lobular hyperplasia than animals under ERT alone. In conclusion, perinatal exposure to xenoestrogens increases the susceptibility of the mammary gland to develop cysts and hyperplastic lesions when confronted with ERT later in life.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Cisto Mamário/induzido quimicamente , Carcinoma Intraductal não Infiltrante/induzido quimicamente , Dietilestilbestrol/efeitos adversos , Estradiol/efeitos adversos , Glândulas Mamárias Animais/efeitos dos fármacos , Fenóis/efeitos adversos , Administração Oral , Animais , Compostos Benzidrílicos/administração & dosagem , Cisto Mamário/veterinária , Carcinoma Intraductal não Infiltrante/veterinária , Proliferação de Células/efeitos dos fármacos , Dietilestilbestrol/administração & dosagem , Estradiol/administração & dosagem , Terapia de Reposição de Estrogênios/efeitos adversos , Terapia de Reposição de Estrogênios/métodos , Feminino , Ovariectomia , Fenóis/administração & dosagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Fatores de Risco
18.
Toxicology ; 376: 2-14, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27287056

RESUMO

Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased the expression of Wnt7a in the stromal and glandular epithelial cells on PND21. Neonatal exposure to GBH disrupts the postnatal uterine development at the neonatal and prepubertal period. All these changes may alter the functional differentiation of the uterus, affecting the female fertility and/or promoting the development of neoplasias.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Glicina/toxicidade , Gravidez , Distribuição Aleatória , Ratos , Ratos Wistar , Útero/metabolismo , Glifosato
19.
Environ Toxicol ; 32(4): 1191-1201, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27463640

RESUMO

Glyphosate is the active ingredient of several herbicide formulations. Different reports suggest that glyphosate-based herbicides (GBHs) may act as endocrine disruptors. We evaluated the potential estrogenic effects of a GBH formulation using the uterotrophic assay. Adult ovariectomized rats were sc injected for 3 consecutive days with: saline solution (vehicle control), 2.10-5  g E2 /kg/day (uterotrophic dose; UE2 ), 2.10-7  g E2 /kg/day (nonuterotrophic dose; NUE2 ), or 0.5, 5, or 50 mg GBH/kg/day of the. Twenty-four hours after the last injection, the uterus was removed and weighed and processed for histopathology and mRNA extraction. Epithelial cell proliferation and height and expression of estrogen-responsive genes were evaluated (estrogen receptors, ERα and ERß; progesterone receptor, PR; complement 3, C3). Uterine weight and epithelial proliferation were not affected by GBH. However, the luminal epithelial cell height increased at GBH0.5. ERα mRNA was downregulated by all GBH doses and E2 groups, whereas PR and C3 mRNA were diminished by GBH0.5. GBH5-, GBH50-, and UE2 -treated rats showed downregulated ERα protein expression in luminal epithelial cells, while the receptor was upregulated in the stroma. GBH upregulated ERß (GBH0.5-50) and PR (GBH5) expressions in glandular epithelial cells, similar effect to that of NUE2 group. These results indicate that, although the uterine weight was not affected, GBH modulates the expression of estrogen-sensitive genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1191-1201, 2017.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Útero/efeitos dos fármacos , Animais , Animais Endogâmicos , Estradiol/fisiologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicina/toxicidade , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Ratos , Ratos Wistar , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Útero/metabolismo , Útero/patologia , Glifosato
20.
Nutr Res ; 36(9): 1004-1012, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632921

RESUMO

Removing dietary phytoestrogens causes obesity and diabetes in adult male rats. Based on the facts that hypothalamic food intake control is disrupted in phytoestrogen-deprived animals and that several steroids affect food intake, we hypothesized that phytoestrogen withdrawal alters the expression of hypothalamic steroidogenic enzymes. Male Wistar rats fed with a high-phytoestrogen diet from conception to adulthood were subjected to phytoestrogen withdrawal by feeding them a low-phytoestrogen diet or a high-phytoestrogen, high-fat diet. Withdrawal of dietary phytoestrogens increased 3ß-hydroxysteroid dehydrogenase and P450 aromatase gene expression and decreased those of 5α-reductase-1. This is a direct effect of the lack of dietary phytoestrogens and not a consequence of obesity, as it was not observed in high-fat-fed rats. Phytoestrogen withdrawal and high-fat diet intake reduced hypothalamic expression of estrogen receptor (ER)α correlated with low levels of ERα-O, ERα-OS, and ERα-OT transcripts. Variations in gene expression of steroidogenic enzymes may affect the content of neurosteroids. As neurosteroids are related to food intake control, the changes observed may be a novel mechanism in the regulation of energy balance in obese phytoestrogen-deprived animals. In rats, steroidogenesis and ER signaling appear to be altered by phytoestrogen withdrawal in the rat. The ubiquity of phytoestrogens in the diet and changing intakes or withdrawal suggest that aspects of human health could be affected based on the rat and warrant further research.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Regulação do Apetite , Aromatase/metabolismo , Colestenona 5 alfa-Redutase/metabolismo , Dieta , Obesidade/etiologia , Fitoestrógenos/administração & dosagem , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/fisiologia , Ingestão de Energia , Receptor alfa de Estrogênio/metabolismo , Expressão Gênica , Hipotálamo/metabolismo , Masculino , Neurotransmissores/metabolismo , Obesidade/metabolismo , Fitoestrógenos/farmacologia , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA