Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 177: 108236, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32712274

RESUMO

Certain ligands slowly bind to acetylcholinesterase. As a result, there is a slow establishment of enzyme-inhibitor equilibrium characterized by a slow onset of inhibition prior reaching steady state. Three mechanisms account for slow-binding inhibition: a) slow binding rate constant kon, b) slow ligand induced-fit following a fast binding step, c) slow conformational selection of an enzyme form. The slow equilibrium may be followed by a chemical step. This later that can be irreversible has been observed with certain alkylating agents and substrate transition state analogs. Slow-binding inhibitors present long residence times on target. This results in prolonged pharmacological or toxicological action. Through several well-known molecules (e.g. huperzine) and new examples (tocopherol, trifluoroacetophenone and a 6-methyluracil alkylammonium derivative), we show that slow-binding inhibitors of acetylcholinesterase are promising drugs for treatment of neurological diseases such as Alzheimer disease and myasthenia gravis. Moreover, they may be of interest for neuroprotection (prophylaxis) against organophosphorus poisoning. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/metabolismo , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/enzimologia , Alcaloides/administração & dosagem , Alcaloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Humanos , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/enzimologia , Ligação Proteica , Sesquiterpenos/administração & dosagem , Sesquiterpenos/metabolismo , Tocoferóis/administração & dosagem , Tocoferóis/metabolismo
2.
Biomolecules ; 10(2)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059521

RESUMO

Cholines acylated with unsaturated fatty acids are a recently discovered family of endogenous lipids. However, the data on the biological activity of acylcholines remain very limited. We hypothesized that acylcholines containing residues of arachidonic (AA-CHOL), oleic (Ol-CHOL), linoleic (Ln-CHOL), and docosahexaenoic (DHA-CHOL) acids act as modulators of the acetylcholine signaling system. In the radioligand binding assay, acylcholines showed inhibition in the micromolar range of both α7 neuronal nAChR overexpressed in GH4C1 cells and muscle type nAChR from Torpedo californica, as well as Lymnaea stagnalis acetylcholine binding protein. Functional response was checked in two cell lines endogenously expressing α7 nAChR. In SH-SY5Y cells, these compounds did not induce Ca2+ rise, but inhibited the acetylcholine-evoked Ca2+ rise with IC50 9 to 12 µM. In the A549 lung cancer cells, where α7 nAChR activation stimulates proliferation, Ol-CHOL, Ln-CHOL, and AA-CHOL dose-dependently decreased cell viability by up to 45%. AA-CHOL inhibited human erythrocyte acetylcholinesterase (AChE) and horse serum butyrylcholinesterase (BChE) by a mixed type mechanism with Ki = 16.7 ± 1.5 µM and αKi = 51.4 ± 4.1 µM for AChE and Ki = 70.5 ± 6.3 µM and αKi = 214 ± 17 µM for BChE, being a weak substrate of the last enzyme only, agrees with molecular docking results. Thus, long-chain unsaturated acylcholines could be viewed as endogenous modulators of the acetylcholine signaling system.


Assuntos
Acetilcolina/farmacologia , Ácidos Araquidônicos/farmacologia , Colina/farmacologia , Inibidores da Colinesterase/farmacologia , Células A549 , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Butirilcolinesterase/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Colina/metabolismo , Eritrócitos/enzimologia , Feminino , Cavalos , Humanos , Concentração Inibidora 50 , Cinética , Lymnaea/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Ligação Proteica , Transdução de Sinais , Torpedo/metabolismo , Xenopus
3.
Bioorg Chem ; 94: 103455, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31791680

RESUMO

Novel ammonium and betaine derivatives of p-tert-butylthiacalix[4]arene in cone and 1,3-alternate conformation were synthesized with high yields for the first time. The obtained compounds form in water spherical nanoparticles. It was shown by molecular docking calculations and in vitro experiments that amino and betaine derivatives can inhibit acetylcholinesterase and butyrylcholinesterase on the level of pyridostigmine while the toxicity of the obtained compounds is much lower than that of pyridostigmine.


Assuntos
Acetilcolinesterase/metabolismo , Aminas/farmacologia , Betaína/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Fenóis/farmacologia , Sulfetos/farmacologia , Aminas/química , Betaína/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenóis/química , Proteínas Recombinantes/metabolismo , Solubilidade , Relação Estrutura-Atividade , Sulfetos/química , Água/química
4.
Biochimie ; 156: 196-205, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30385318

RESUMO

Human plasma butyrylcholinesterase (BChE) is an endogenous bioscavenger that hydrolyzes numerous medicamentous and poisonous esters and scavenges potent organophosphorus nerve agents. BChE is thus a marker for the diagnosis of OP poisoning. It is also considered a therapeutic target against Alzheimer's disease. Although the X-ray structure of a partially deglycosylated monomer of human BChE was solved 15 years ago, all attempts to determine the 3D structure of the natural full-length glycosylated tetrameric human BChE have been unsuccessful so far. Here, a combination of three complementary structural methods-single-particle cryo-electron microscopy, molecular dynamics and small-angle X-ray scattering-were implemented to elucidate the overall structural and spatial organization of the natural tetrameric human plasma BChE. A 7.6 ŠcryoEM map clearly shows the major features of the enzyme: a dimer of dimers with a nonplanar monomer arrangement, in which the interconnecting super helix complex PRAD-(WAT)4-peptide C-terminal tail is located in the center of the tetramer, nearly perpendicular to its plane, and is plunged deep between the four subunits. Molecular dynamics simulations allowed optimization of the geometry of the molecule and reconstruction of the structural features invisible in the cryoEM density, i.e., glycan chains and glycan interdimer contact areas, as well as intermonomer disulfide bridges at the C-terminal tail. Finally, SAXS data were used to confirm the consistency of the obtained model with the experimental data. The tetramer organization of BChE is unique in that the four subunits are joined at their C-termini through noncovalent contacts with a short polyproline-rich peptide. This tetramer structure could serve as a model for the design of highly stable glycosylated tetramers.


Assuntos
Butirilcolinesterase/química , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Humanos , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Biochem J ; 473(9): 1225-36, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26929400

RESUMO

Inhibition of human AChE (acetylcholinesterase) and BChE (butyrylcholinesterase) by an alkylammonium derivative of 6-methyluracil, C-547, a potential drug for the treatment of MG (myasthenia gravis) was studied. Kinetic analysis of AChE inhibition showed that C-547 is a slow-binding inhibitor of type B, i.e. after formation of the initial enzyme·inhibitor complex (Ki=140 pM), an induced-fit step allows establishment of the final complex (Ki*=22 pM). The estimated koff is low, 0.05 min(-1) On the other hand, reversible inhibition of human BChE is a fast-binding process of mixed-type (Ki=1.77 µM; Ki'=3.17 µM). The crystal structure of mouse AChE complexed with C-547 was solved at 3.13 Å resolution. The complex is stabilized by cation-π, stacking and hydrogen-bonding interactions. Molecular dynamics simulations of the binding/dissociation processes of C-547 and C-35 (a non-charged analogue) to mouse and human AChEs were performed. Molecular modelling on mouse and human AChE showed that the slow step results from an enzyme conformational change that allows C-547 to cross the bottleneck in the active-site gorge, followed by formation of tight complex, as observed in the crystal structure. In contrast, the related non-charged compound C-35 is not a slow-binding inhibitor. It does not cross the bottleneck because it is not sensitive to the electrostatic driving force to reach the bottom of the gorge. Thus C-547 is one of the most potent and selective reversible inhibitors of AChE with a long residence time, τ=20 min, longer than for other reversible inhibitors used in the treatment of MG. This makes C-547 a promising drug for the treatment of this disease.


Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Miastenia Gravis , Compostos de Amônio Quaternário/química , Uracila/análogos & derivados , Animais , Células CHO , Inibidores da Colinesterase/uso terapêutico , Cricetinae , Cricetulus , Humanos , Camundongos , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/enzimologia , Compostos de Amônio Quaternário/uso terapêutico , Uracila/química , Uracila/uso terapêutico
6.
Arch Biochem Biophys ; 593: 60-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26874196

RESUMO

Slow-binding inhibition (SBI) of enzymes is characterized by slow establishment of enzyme-inhibitor equilibrium. Cholinesterases (ChEs) display slow onset of inhibition with certain inhibitors. After a survey of SBI mechanisms, SBI of ChEs is examined. SBI results either from simple slow interaction, induced-fit, or slow conformational selection. In some cases, the slow equilibrium is followed by an irreversible chemical step. This later was observed for the interaction of ChEs with certain irreversible inhibitors. Because slow-binding inhibitors present pharmacological advantages over classical reversible inhibitors (e.g. long target-residence times, resulting in prolonged efficacy with minimal unwanted side effects), slow-binding inhibitors of ChEs are promising new drugs for treatment of Alzheimer disease, myasthenia, and neuroprotection. SBI is also of toxicological importance; it may play a role in mechanisms of resistance and protection against poisoning by irreversible agents.


Assuntos
Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Humanos , Modelos Moleculares , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/enzimologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/toxicidade , Ligação Proteica , Conformação Proteica
7.
J Biol Chem ; 289(20): 14109-20, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24706752

RESUMO

Activated factor XII (FXIIa) is selectively inhibited by corn Hageman factor inhibitor (CHFI) among other plasma proteases. CHFI is considered a canonical serine protease inhibitor that interacts with FXIIa through its protease-binding loop. Here we examined whether the protease-binding loop alone is sufficient for the selective inhibition of serine proteases or whether other regions of a canonical inhibitor are involved. Six CHFI mutants lacking different N- and C-terminal portions were generated. CHFI-234, which lacks the first and fifth disulfide bonds and 11 and 19 amino acid residues at the N and C termini, respectively, exhibited no significant changes in FXIIa inhibition (Ki = 3.2 ± 0.4 nm). CHFI-123, which lacks 34 amino acid residues at the C terminus and the fourth and fifth disulfide bridges, inhibited FXIIa with a Ki of 116 ± 16 nm. To exclude interactions outside the FXIIa active site, a synthetic cyclic peptide was tested. The peptide contained residues 20-45 (Protein Data Bank code 1BEA), and a C29D substitution was included to avoid unwanted disulfide bond formation between unpaired cysteines. Surprisingly, the isolated protease-binding loop failed to inhibit FXIIa but retained partial inhibition of trypsin (Ki = 11.7 ± 1.2 µm) and activated factor XI (Ki = 94 ± 11 µm). Full-length CHFI inhibited trypsin with a Ki of 1.3 ± 0.2 nm and activated factor XI with a Ki of 5.4 ± 0.2 µm. Our results suggest that the protease-binding loop is not sufficient for the interaction between FXIIa and CHFI; other regions of the inhibitor also contribute to specific inhibition.


Assuntos
Fator XIa/antagonistas & inibidores , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Zea mays , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bovinos , Clonagem Molecular , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Tripsina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA