Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 40(1): 289, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521429

RESUMO

BACKGROUND: The development of persistent endoplasmic reticulum (ER) stress is one of the cornerstones of prostate carcinogenesis; however, the mechanism is missing. Also, alcohol is a physiological ER stress inducer, and the link between alcoholism and progression of prostate cancer (PCa) is well documented but not well characterized. According to the canonical model, the mediator of ER stress, ATF6, is cleaved sequentially in the Golgi by S1P and S2P proteases; thereafter, the genes responsible for unfolded protein response (UPR) undergo transactivation. METHODS: Cell lines used were non-malignant prostate epithelial RWPE-1 cells, androgen-responsive LNCaP, and 22RV1 cells, as well as androgen-refractory PC-3 cells. We also utilized PCa tissue sections from patients with different Gleason scores and alcohol consumption backgrounds. Several sophisticated approaches were employed, including Structured illumination superresolution microscopy, Proximity ligation assay, Atomic force microscopy, and Nuclear magnetic resonance spectroscopy. RESULTS: Herein, we identified the trans-Golgi matrix dimeric protein GCC185 as a Golgi retention partner for both S1P and S2P, and in cells lacking GCC185, these enzymes lose intra-Golgi situation. Progression of prostate cancer (PCa) is associated with overproduction of S1P and S2P but monomerization of GCC185 and its downregulation. Utilizing different ER stress models, including ethanol administration, we found that PCa cells employ an elegant mechanism that auto-activates ER stress by fragmentation of Golgi, translocation of S1P and S2P from Golgi to ER, followed by intra-ER cleavage of ATF6, accelerated UPR, and cell proliferation. The segregation of S1P and S2P from Golgi and activation of ATF6 are positively correlated with androgen receptor signaling, different disease stages, and alcohol consumption. Finally, depletion of ATF6 significantly retarded the growth of xenograft prostate tumors and blocks production of pro-metastatic metabolites. CONCLUSIONS: We found that progression of PCa associates with translocation of S1P and S2P proteases to the ER and subsequent ATF6 cleavage. This obviates the need for ATF6 transport to the Golgi and enhances UPR and cell proliferation. Thus, we provide the novel mechanistic model of ATF6 activation and ER stress implication in the progression of PCa, suggesting ATF6 is a novel promising target for prostate cancer therapy.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Complexo de Golgi/metabolismo , Xenoenxertos , Humanos , Masculino , Metaloendopeptidases/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Pró-Proteína Convertases/metabolismo , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Ligação Proteica , Transporte Proteico , Serina Endopeptidases/metabolismo
2.
Cells ; 8(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847122

RESUMO

BACKGROUND: The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS: In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS: We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION: Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.


Assuntos
Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Brefeldina A/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HeLa , Humanos , Imunoprecipitação , Masculino , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Microscopia Confocal , Neoplasias da Próstata/metabolismo , Ligação Proteica
3.
J Struct Biol ; 184(2): 217-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055458

RESUMO

The DNA cytosine deaminase APOBEC3G (A3G) is a two-domain protein that binds single-stranded DNA (ssDNA) largely through its N-terminal domain and catalyzes deamination using its C-terminal domain. A3G is considered an innate immune effector protein, with a natural capacity to block the replication of retroviruses such as HIV and retrotransposons. However, knowledge about its biophysical properties and mechanism of interaction with DNA are still limited. Oligomerization is one of these unclear issues. What is the stoichiometry of the free protein? What are the factors defining the oligomeric state of the protein? How does the protein oligomerization change upon DNA binding? How stable are protein oligomers? We address these questions here using atomic force microscopy (AFM) to directly image A3G protein in a free-state and in complexes with DNA, and using time-lapse AFM imaging to characterize the dynamics of A3G oligomers. We found that the formation of oligomers is an inherent property of A3G and that the yield of oligomers depends on the protein concentration. Oligomerization of A3G in complexes with ssDNA follows a similar pattern: the higher the protein concentrations the larger oligomers sizes. The specificity of A3G binding to ssDNA does not depend on stoichiometry. The binding of large A3G oligomers requires a longer ssDNA substrate; therefore, much smaller oligomers form complexes with short ssDNA. A3G oligomers dissociate spontaneously into monomers and this process primarily occurs through a monomer dissociation pathway.


Assuntos
Citidina Desaminase/química , Desaminase APOBEC-3G , Citidina Desaminase/ultraestrutura , DNA de Cadeia Simples/química , DNA de Cadeia Simples/ultraestrutura , Células HEK293 , Humanos , Microscopia de Força Atômica , Tamanho da Partícula , Ligação Proteica , Multimerização Proteica , Imagem com Lapso de Tempo
4.
J Mol Biol ; 354(5): 1028-42, 2005 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-16290901

RESUMO

Protein misfolding is conformational transition dramatically facilitating the assembly of protein molecules into aggregates of various morphologies. Spontaneous formation of specific aggregates, mostly amyloid fibrils, was initially believed to be limited to proteins involved in the development of amyloidoses. However, recent studies show that, depending on conditions, the majority of proteins undergo structural transitions leading to the appearance of amyloidogenic intermediates followed by aggregate formation. Various techniques have been used to characterize the protein misfolding facilitating the aggregation process, but no direct evidence as to how such a conformational transition increases the intermolecular interactions has been obtained as of yet. We have applied atomic force microscopy (AFM) to follow the interaction between protein molecules as a function of pH. These studies were performed for three unrelated and structurally distinctive proteins, alpha-synuclein, amyloid beta-peptide (Abeta) and lysozyme. It was shown that the attractive force between homologous protein molecules is minimal at physiological pH and increases dramatically at acidic pH. Moreover, the dependence of the pulling forces is sharp, suggesting a pH-dependent conformational transition within the protein. Parallel circular dichroism (CD) measurements performed for alpha-synuclein and Abeta revealed that the decrease in pH is accompanied by a sharp conformational transition from a random coil at neutral pH to the more ordered, predominantly beta-sheet, structure at low pH. Importantly, the pH ranges for these conformational transitions coincide with those of pulling forces changes detected by AFM. In addition, protein self-assembly into filamentous aggregates studied by AFM imaging was shown to be facilitated at pH values corresponding to the maximum of pulling forces. Overall, these results indicate that proteins at acidic pH undergo structural transition into conformations responsible for the dramatic increase in interprotein interaction and promoting the formation of protein aggregates.


Assuntos
Peptídeos beta-Amiloides/ultraestrutura , Microscopia de Força Atômica , Muramidase/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Animais , Galinhas , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Muramidase/química , Muramidase/genética , Mutação , Fragmentos de Peptídeos/química , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Análise Espectral , Temperatura , alfa-Sinucleína/metabolismo
5.
Nucleic Acids Res ; 32(15): 4704-12, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15342791

RESUMO

Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zalpha domain, which has been shown to specifically recognize Z-DNA. The biological function of Zalpha is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zalpha domain in isolation. We have hypothesized that the recognition of a Z-DNA sequence by the Zalpha(ADAR1) domain is context specific, occurring under energetic conditions, which favor Z-DNA formation. To test this hypothesis, we have applied atomic force microscopy to image Zalpha(ADAR1) complexed with supercoiled plasmid DNAs. We have demonstrated that the Zalpha(ADAR1) binds specifically to Z-DNA and preferentially to d(CG)(n) inserts, which require less energy for Z-DNA induction compared to other sequences. A notable finding is that site-specific Zalpha binding to d(GC)(13) or d(GC)(2)C(GC)(10) inserts is observed when DNA supercoiling is insufficient to induce Z-DNA formation. These results indicate that Zalpha(ADAR1) binding facilities the B-to-Z transition and provides additional support to the model that Z-DNA binding proteins may regulate biological processes through structure-specific recognition.


Assuntos
Adenosina Desaminase/química , DNA Super-Helicoidal/ultraestrutura , DNA Forma Z/ultraestrutura , Adenosina Desaminase/metabolismo , Sítios de Ligação , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , DNA Forma Z/química , DNA Forma Z/metabolismo , Humanos , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/ultraestrutura , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA