Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gerontol A Biol Sci Med Sci ; 78(7): 1125-1134, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-36757838

RESUMO

Calorie restriction (CR) extends life span by modulating the mechanisms involved in aging. We quantified the hepatic proteome of male C57BL/6 mice exposed to graded levels of CR (0%-40% CR) for 3 months, and evaluated which signaling pathways were most affected. The metabolic pathways most significantly stimulated by the increase in CR, included the glycolysis/gluconeogenesis pathway, the pentose phosphate pathway, the fatty acid degradation pathway, the valine, leucine, and isoleucine degradation pathway, and the lysine degradation pathway. The metabolism of xenobiotics by cytochrome P450 pathway was activated and feminized by increased CR, while production in major urinary proteins (Mups) was strongly reduced, consistent with a reduced investment in reproduction as predicted by the disposable soma hypothesis. However, we found no evidence of increased somatic protection, and none of the 4 main pathways implied to be linked to the impact of CR on life span (insulin/insulin-like growth factor [IGF-1], nuclear factor-κB [NF-κB], mammalian Target of Rapamycin [mTOR], and sirtuins) as well as pathways in cancer, were significantly changed at the protein level in relation to the increase in CR level. This was despite previous work at the transcriptome level in the same individuals indicating such changes. On the other hand, we found Aldh2, Aldh3a2, and Aldh9a1 in carnitine biosynthesis and Acsl5 in carnitine shuttle system were up-regulated by increased CR, which are consistent with our previous work on metabolome of the same individuals. Overall, the patterns of protein expression were more consistent with a "clean cupboards" than a "disposable soma" interpretation.


Assuntos
Envelhecimento , Restrição Calórica , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Fígado/metabolismo , Carnitina , Mamíferos
2.
J Gerontol A Biol Sci Med Sci ; 76(4): 601-610, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33053185

RESUMO

Calorie restriction (CR) remains the most robust intervention to extend life span and improve healthspan. Though the cerebellum is more commonly associated with motor control, it has strong links with the hypothalamus and is thought to be associated with nutritional regulation and adiposity. Using a global mass spectrometry-based metabolomics approach, we identified 756 metabolites that were significantly differentially expressed in the cerebellar region of the brain of C57BL/6J mice, fed graded levels of CR (10, 20, 30, and 40 CR) compared to mice fed ad libitum for 12 hours a day. Pathway enrichment indicated changes in the pathways of adenosine and guanine (which are precursors of DNA production), aromatic amino acids (tyrosine, phenylalanine, and tryptophan) and the sulfur-containing amino acid methionine. We also saw increases in the tricarboxylic acid cycle (TCA) cycle, electron donor, and dopamine and histamine pathways. In particular, changes in l-histidine and homocarnosine correlated positively with the level of CR and food anticipatory activity and negatively with insulin and body temperature. Several metabolic and pathway changes acted against changes seen in age-associated neurodegenerative disorders, including increases in the TCA cycle and reduced l-proline. Carnitine metabolites contributed to discrimination between CR groups, which corroborates previous work in the liver and plasma. These results indicate the conservation of certain aspects of metabolism across tissues with CR. Moreover, this is the first study to indicate CR alters the cerebellar metabolome, and does so in a graded fashion, after only a short period of restriction.


Assuntos
Regulação do Apetite , Restrição Calórica/métodos , Cerebelo/fisiologia , Envelhecimento Saudável/metabolismo , Hipotálamo/fisiologia , Metaboloma/fisiologia , Metabolômica/métodos , Transdução de Sinais/fisiologia , Animais , Fome/fisiologia , Longevidade , Espectrometria de Massas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle
3.
J Gerontol A Biol Sci Med Sci ; 75(2): 218-229, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31220223

RESUMO

Animals undergoing calorie restriction (CR) often lower their body temperature to conserve energy. Brown adipose tissue (BAT) is stimulated through norepinephrine when rapid heat production is needed, as it is highly metabolically active due to the uncoupling of the electron transport chain from ATP synthesis. To better understand how BAT metabolism changes with CR, we used metabolomics to identify 883 metabolites that were significantly differentially expressed in the BAT of C57BL/6 mice, fed graded CR (10%, 20%, 30%, and 40% CR relative to their individual baseline intake), compared with mice fed ad libitum (AL) for 12 hours a day. Pathway analysis revealed that graded CR had an impact on the TCA cycle and fatty acid degradation. In addition, an increase in nucleic acids and catecholamine pathways was seen with graded CR in the BAT metabolome. We saw increases in antioxidants with CR, suggesting a beneficial effect of mitochondrial uncoupling. Importantly, the instigator of BAT activation, norepinephrine, was increased with CR, whereas its precursors l-tyrosine and dopamine were decreased, indicating a shift of metabolites through the activation pathway. Several of these key changes were correlated with food anticipatory activity and body temperature, indicating BAT activation may be driven by responses to hunger.


Assuntos
Tecido Adiposo Marrom/metabolismo , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Restrição Calórica , Catecolaminas/metabolismo , Metabolômica , Animais , Teorema de Bayes , Temperatura Corporal , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
4.
J Gerontol A Biol Sci Med Sci ; 73(3): 279-288, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28575190

RESUMO

Calorie restriction (CR) leads to a remarkable decrease in adipose tissue mass and increases longevity in many taxa. Since the discovery of leptin, the secretory abilities of adipose tissue have gained prominence in the responses to CR. We quantified transcripts of epididymal white adipose tissue of male C57BL/6 mice exposed to graded levels of CR (0-40% CR) for 3 months. The numbers of differentially expressed genes (DEGs) involved in NF-κB, HIF1-α, and p53 signaling increased with increasing levels of CR. These pathways were all significantly downregulated at 40% CR relative to 12 h ad libitum feeding. In addition, graded CR had a substantial impact on DEGs associated with pathways involved in angiogenesis. Of the 497 genes differentially expressed with graded CR, 155 of these genes included a signal peptide motif. These putative signaling proteins were involved in the response to ketones, TGF-ß signaling, negative regulation of insulin secretion, and inflammation. This accords with the previously established effects of graded CR on glucose homeostasis in the same mice. Overall these data suggest reduced levels of adipose tissue under CR may contribute to the protective impact of CR in multiple ways linked to changes in a large population of secreted proteins.


Assuntos
Tecido Adiposo Branco/metabolismo , Envelhecimento/fisiologia , Restrição Calórica , Epididimo/metabolismo , Longevidade/fisiologia , Transcriptoma/fisiologia , Animais , Expressão Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
5.
Aging (Albany NY) ; 9(7): 1770-1824, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28768896

RESUMO

Calorie restriction (CR) may extend longevity by modulating the mechanisms involved in aging. Different hypotheses have been proposed for its main mode of action. We quantified hepatic transcripts of male C57BL/6 mice exposed to graded levels of CR (0% to 40% CR) for three months, and evaluated the responses relative to these various hypotheses. Of the four main signaling pathways implied to be linked to the impact of CR on lifespan (insulin/insulin like growth factor 1 (IGF-1), nuclear factor-kappa beta (NF-ĸB), mechanistic target of rapamycin (mTOR) and sirtuins (SIRTs)), all the pathways except SIRT were altered in a manner consistent with increased lifespan. However, the expression levels of SIRT4 and SIRT7 were decreased with increasing levels of CR. Changes consistent with altered fuel utilization under CR may reduce reactive oxygen species production, which was paralleled by reduced protection. Downregulated major urinary protein (MUP) transcription suggested reduced reproductive investment. Graded CR had a positive effect on autophagy and xenobiotic metabolism, and was protective with respect to cancer signaling. CR had no significant effect on fibroblast growth factor-21 (FGF21) transcription but affected transcription in the hydrogen sulfide production pathway. Responses to CR were consistent with several different hypotheses, and the benefits of CR on lifespan likely reflect the combined impact on multiple aging related processes.


Assuntos
Restrição Calórica , Longevidade/efeitos dos fármacos , Ração Animal/análise , Animais , Regulação da Expressão Gênica , Expectativa de Vida , Longevidade/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Oncotarget ; 7(15): 19147-70, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27007156

RESUMO

Calorie restriction (CR) delays the onset of age-related disease and extends lifespan in a number of species. When faced with reduced energy supply animals need to lower energy demands, which may be achieved in part by reducing physical activity (PA). We monitored changes in PA using implanted transmitters in male C57BL/6 mice in response to graded levels of CR (10 to 40%) or matched levels of graded protein restriction (PR) for 3 months. Mice were fed at lights out and ad libitum controls were limited to dark-phase feeding (12AL) or 24hr/day. Total daily PA declined in a non-linear manner over the first 30 days of CR or PR, remaining stable thereafter. Total daily PA was not related to the level of CR or PR. Total daily PA over the last 20 days of restriction was related to circulating leptin, insulin, tumor necrosis factor-α (TNF- α) and insulin-like growth factor (IGF)-1 levels, measured after 3 months. Mice under restriction showed a high level of activity in the 2hrs before feeding (food anticipatory activity: FAA). FAA followed a complex pattern, peaking around day 20, falling on ~day 37 then increasing again. FAA was also positively related to the level of restriction and inversely to leptin, insulin, TNF-α and IGF-1. Non-FAA, in contrast, declined over the period of restriction, generally more so in mice under greater restriction, thereby offsetting to some extent the increase in FAA. Mice under PR displayed no changes in PA over time or in comparison to 12AL, and showed no increase in FAA.


Assuntos
Restrição Calórica/métodos , Proteínas Alimentares/administração & dosagem , Ingestão de Energia/fisiologia , Condicionamento Físico Animal/fisiologia , Animais , Comportamento Alimentar , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
7.
Aging (Albany NY) ; 8(4): 642-63, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26945906

RESUMO

Food intake and circadian rhythms are regulated by hypothalamic neuropeptides and circulating hormones, which could mediate the anti-ageing effect of calorie restriction (CR). We tested whether these two signaling pathways mediate CR by quantifying hypothalamic transcripts of male C57BL/6 mice exposed to graded levels of CR (10 % to 40 %) for 3 months. We found that the graded CR manipulation resulted in upregulation of core circadian rhythm genes, which correlated negatively with circulating levels of leptin, insulin-like growth factor 1 (IGF-1), insulin, and tumor necrosis factor alpha (TNF-α). In addition, key components in the hunger signaling pathway were expressed in a manner reflecting elevated hunger at greater levels of restriction, and which also correlated negatively with circulating levels of insulin, TNF-α, leptin and IGF-1. Lastly, phenotypes, such as food anticipatory activity and body temperature, were associated with expression levels of both hunger genes and core clock genes. Our results suggest modulation of the hunger and circadian signaling pathways in response to altered levels of circulating hormones, that are themselves downstream of morphological changes resulting from CR treatment, may be important elements in the response to CR, driving some of the key phenotypic outcomes.


Assuntos
Restrição Calórica , Ritmo Circadiano/genética , Fome/fisiologia , Hipotálamo/metabolismo , Transdução de Sinais/genética , Transcriptoma , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Fator de Necrose Tumoral alfa/sangue
8.
Oncotarget ; 6(27): 23213-37, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26061745

RESUMO

Limiting food intake attenuates many of the deleterious effects of aging, impacting upon healthspan and leading to an increased lifespan. Whether it is the overall restriction of calories (calorie restriction: CR) or the incidental reduction in macronutrients such as protein (protein restriction: PR) that mediate these effects is unclear. The impact of 3 month CR or PR, (10 to 40%), on C57BL/6 mice was compared to controls fed ad libitum. Reductions in circulating leptin, tumor necrosis factor-α and insulin-like growth factor-1 (IGF-1) were relative to the level of CR and individually associated with morphological changes but remained unchanged following PR. Glucose tolerance and insulin sensitivity were improved following CR but not affected by PR. There was no indication that CR had an effect on oxidative damage, however CR lowered antioxidant activity. No biomarkers of oxidative stress were altered by PR. CR significantly reduced levels of major urinary proteins suggesting lowered investment in reproduction. Results here support the idea that reduced adipokine levels, improved insulin/IGF-1 signaling and reduced reproductive investment play important roles in the beneficial effects of CR while, in the short-term, attenuation of oxidative damage is not applicable. None of the positive effects were replicated with PR.


Assuntos
Glicemia/análise , Restrição Calórica , Proteínas Alimentares , Glucose/metabolismo , Leptina/sangue , Estresse Oxidativo , Adipocinas/metabolismo , Animais , Antioxidantes/química , Feminino , Teste de Tolerância a Glucose , Homeostase , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA