Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Eur J Respir Med ; 5(1): 359-371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38390497

RESUMO

Background: A limited pool of SNPs are linked to the development and severity of sarcoidosis, a systemic granulomatous inflammatory disease. By integrating genome-wide association studies (GWAS) data and expression quantitative trait loci (eQTL) single nuclear polymorphisms (SNPs), we aimed to identify novel sarcoidosis SNPs potentially influencing the development of complicated sarcoidosis. Methods: A GWAS (Affymetrix 6.0) involving 209 African-American (AA) and 193 European-American (EA, 75 and 51 complicated cases respectively) and publicly-available GWAS controls (GAIN) was utilized. Annotation of multi-tissue eQTL SNPs present on the GWAS created a pool of ~46,000 eQTL SNPs examined for association with sarcoidosis risk and severity (Logistic Model, Plink). The most significant EA/AA eQTL SNPs were genotyped in a sarcoidosis validation cohort (n=1034) and cross-validated in two independent GWAS cohorts. Results: No single GWAS SNP achieved significance (p<1x10-8), however, analysis of the eQTL/GWAS SNP pool yielded 621 eQTL SNPs (p<10-4) associated with 730 genes that highlighted innate immunity, MHC Class II, and allograft rejection pathways with multiple SNPs validated in an independent sarcoidosis cohort (105 SNPs analyzed) (NOTCH4, IL27RA, BTNL2, ANXA11, HLA-DRB1). These studies confirm significant association of eQTL/GWAS SNPs in EAs and AAs with sarcoidosis risk and severity (complicated sarcoidosis) involving HLA region and innate immunity. Conclusion: Despite the challenge of deciphering the genetic basis for sarcoidosis risk/severity, these results suggest that integrated eQTL/GWAS approaches may identify novel variants/genes and support the contribution of dysregulated innate immune responses to sarcoidosis severity.

2.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36166305

RESUMO

Disseminated coccidioidomycosis (DCM) is caused by Coccidioides, pathogenic fungi endemic to the southwestern United States and Mexico. Illness occurs in approximately 30% of those infected, less than 1% of whom develop disseminated disease. To address why some individuals allow dissemination, we enrolled patients with DCM and performed whole-exome sequencing. In an exploratory set of 67 patients with DCM, 2 had haploinsufficient STAT3 mutations, and defects in ß-glucan sensing and response were seen in 34 of 67 cases. Damaging CLEC7A and PLCG2 variants were associated with impaired production of ß-glucan-stimulated TNF-α from PBMCs compared with healthy controls. Using ancestry-matched controls, damaging CLEC7A and PLCG2 variants were overrepresented in DCM, including CLEC7A Y238* and PLCG2 R268W. A validation cohort of 111 patients with DCM confirmed the PLCG2 R268W, CLEC7A I223S, and CLEC7A Y238* variants. Stimulation with a DECTIN-1 agonist induced DUOX1/DUOXA1-derived hydrogen peroxide [H2O2] in transfected cells. Heterozygous DUOX1 or DUOXA1 variants that impaired H2O2 production were overrepresented in discovery and validation cohorts. Patients with DCM have impaired ß-glucan sensing or response affecting TNF-α and H2O2 production. Impaired Coccidioides recognition and decreased cellular response are associated with disseminated coccidioidomycosis.


Assuntos
Coccidioidomicose , beta-Glucanas , Humanos , Fator de Necrose Tumoral alfa/genética , Peróxido de Hidrogênio , Coccidioidomicose/genética , Coccidioidomicose/epidemiologia , Coccidioidomicose/microbiologia , Coccidioides/genética
3.
J Allergy Clin Immunol ; 150(3): 604-611, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367470

RESUMO

BACKGROUND: The study of pathogenic mechanisms in adult asthma is often marred by a lack of precise information about the natural history of the disease. Children who have persistent wheezing (PW) during the first 6 years of life and whose symptoms start before age 3 years (PW+) are much more likely to have wheezing illnesses due to rhinovirus (RV) in infancy and to have asthma into adult life than are those who do not have PW (PW-). OBJECTIVE: Our aim was to determine whether nasal epithelial cells from PW+ asthmatic adults as compared with cells from PW- asthmatic adults show distinct biomechanistic processes activated by RV exposure. METHODS: Air-liquid interface cultures derived from nasal epithelial cells of 36-year old participants with active asthma with and without a history of PW in childhood (10 PW+ participants and 20 PW- participants) from the Tucson Children's Respiratory Study were challenged with a human RV-A strain (RV-A16) or control, and their RNA was sequenced. RESULTS: A total of 35 differentially expressed genes involved in extracellular remodeling and angiogenesis distinguished the PW+ group from the PW- group at baseline and after RV-A stimulation. Notably, 22 transcriptomic pathways showed PW-by-RV interactions; the pathways were invariably overactivated in PW+ patients, and were involved in Toll-like receptor- and cytokine-mediated responses, remodeling, and angiogenic processes. CONCLUSIONS: Asthmatic adults with a history of persistent wheeze in the first 6 years of life have specific biomolecular alterations in response to RV-A that are not present in patients without such a history. Targeting these mechanisms may slow the progression of asthma in these patients.


Assuntos
Asma , Infecções por Enterovirus , Infecções por Picornaviridae , Adulto , Asma/diagnóstico , Criança , Pré-Escolar , Células Epiteliais , Humanos , Fenótipo , Sons Respiratórios , Rhinovirus/genética
4.
BMJ Health Care Inform ; 28(1)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33980502

RESUMO

OBJECTIVES: Prior research has reported an increased risk of fatality for patients with cancer, but most studies investigated the risk by comparing cancer to non-cancer patients among COVID-19 infections, where cancer might have contributed to the increased risk. This study is to understand COVID-19's imposed HR of fatality while controlling for covariates, such as age, sex, metastasis status and cancer type. METHODS: We conducted survival analyses of 4606 cancer patients with COVID-19 test results from 16 March to 11 October 2020 in UK Biobank and estimated the overall HR of fatality with and without COVID-19 infection. We also examined the HRs of 13 specific cancer types with at least 100 patients using a stratified analysis. RESULTS: COVID-19 resulted in an overall HR of 7.76 (95% CI 5.78 to 10.40, p<10-10) by following 4606 patients with cancer for 21 days after the tests. The HR varied among cancer type, with over a 10-fold increase in fatality rate (false discovery rate ≤0.02) for melanoma, haematological malignancies, uterine cancer and kidney cancer. Although COVID-19 imposed a higher risk for localised versus distant metastasis cancers, those of distant metastases yielded higher overall fatality rates due to their multiplicative effects. DISCUSSION: The results confirmed prior reports for the increased risk of fatality for patients with COVID-19 plus hematological malignancies and demonstrated similar findings of COVID-19 on melanoma, uterine, and kidney cancers. CONCLUSION: The results highlight the heightened risk that COVID-19 imposes on localised and haematological cancer patients and the necessity to vaccinate uninfected patients with cancer promptly, particularly for the cancer types most influenced by COVID-19. Results also suggest the importance of timely care for patients with localised cancer, whether they are infected by COVID-19 or not.


Assuntos
COVID-19/mortalidade , Nível de Saúde , Neoplasias/mortalidade , Vigilância em Saúde Pública , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Neoplasias/patologia , Medição de Risco , Fatores de Risco , Análise de Sobrevida , Adulto Jovem
5.
Transl Res ; 228: 1-12, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32711186

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown etiology that poses significant challenges in early diagnosis and prediction of progression. Analyses of microRNA and gene expression in IPF have yielded potentially predictive information. However, the relationship between microRNA/gene expression and quantitative phenotypic value in IPF remains controversial, as is the added value of this approach to current molecular signatures in IPF. To identify biomarkers predictive of survival in IPF via a microRNA-driven strategy. We profiled microRNA and protein-coding gene expression in peripheral blood mononuclear cells from 70 IPF subjects in a discovery cohort. We linked the microRNA/gene expression level with the quantitative phenotypic variation in IPF, including diffusing capacity of the lung for carbon monoxide and the forced vital capacity percent predicted. In silico analyses of expression profiles and quantitative phenotypic data allowed the generation of 2 sets of IPF molecular signatures (unique for microRNAs and protein-coding genes) that predict IPF survival. Each signature performed well in a validation cohort comprised of IPF patients aggregated from distinct patient populations recruited from different sites. Resampling test suggests that the protein-coding gene based signature is comparable and potentially superior to published IPF prognostic gene signatures. In conclusion, these results highlight the utility of microRNA-driven peripheral blood molecular signatures as valuable and novel biomarkers associated to individuals at high survival risk and for potentially facilitating individualized therapies in this enigmatic disorder.


Assuntos
Perfilação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , MicroRNAs/genética , Proteínas/genética , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Análise de Sobrevida
6.
Respir Res ; 21(1): 321, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276795

RESUMO

RATIONALE: Despite the availability of multi-"omics" strategies, insights into the etiology and pathogenesis of sarcoidosis have been elusive. This is partly due to the lack of reliable preclinical models and a paucity of validated biomarkers. As granulomas are a key feature of sarcoidosis, we speculate that direct genomic interrogation of sarcoid tissues, may lead to identification of dysregulated gene pathways or biomarker signatures. OBJECTIVE: To facilitate the development sarcoidosis genomic biomarkers by gene expression profiling of sarcoidosis granulomas in lung and lymph node tissues (most commonly affected organs) and comparison to infectious granulomas (coccidiodomycosis and tuberculosis). METHODS: Transcriptomic profiles of immune-related gene from micro-dissected sarcoidosis granulomas within lung and mediastinal lymph node tissues and compared to infectious granulomas from paraffin-embedded blocks. Differentially-expressed genes (DEGs) were profiled, compared among the three granulomatous diseases and analyzed for functional enrichment pathways. RESULTS: Despite histologic similarities, DEGs and pathway enrichment markedly differed in sarcoidosis granulomas from lymph nodes and lung. Lymph nodes showed a clear immunological response, whereas a structural regenerative response was observed in lung. Sarcoidosis granuloma gene expression data corroborated previously reported genomic biomarkers (STAB1, HBEGF, and NOTCH4), excluded others and identified new genomic markers present in lung and lymph nodes, ADAMTS1, NPR1 and CXCL2. Comparisons between sarcoidosis and pathogen granulomas identified pathway divergences and commonalities at gene expression level. CONCLUSION: These findings suggest the importance of tissue and disease-specificity evaluation when exploring sarcoidosis genomic markers. This relevant translational information in sarcoidosis and other two histopathological similar infections provides meaningful specific genomic-derived biomarkers for sarcoidosis diagnosis and prognosis.


Assuntos
Coccidioidomicose/genética , Perfilação da Expressão Gênica , Granuloma/genética , Doenças Linfáticas/genética , Sarcoidose Pulmonar/genética , Transcriptoma , Tuberculose/genética , Adulto , Idoso , Coccidioidomicose/diagnóstico , Coccidioidomicose/imunologia , Coccidioidomicose/microbiologia , Diagnóstico Diferencial , Feminino , Marcadores Genéticos , Granuloma/diagnóstico , Granuloma/imunologia , Granuloma/microbiologia , Humanos , Doenças Linfáticas/diagnóstico , Doenças Linfáticas/imunologia , Masculino , Pessoa de Meia-Idade , Sarcoidose Pulmonar/diagnóstico , Sarcoidose Pulmonar/imunologia , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia , Adulto Jovem
7.
BMC Bioinformatics ; 21(1): 374, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859146

RESUMO

BACKGROUND: In this era of data science-driven bioinformatics, machine learning research has focused on feature selection as users want more interpretation and post-hoc analyses for biomarker detection. However, when there are more features (i.e., transcripts) than samples (i.e., mice or human samples) in a study, it poses major statistical challenges in biomarker detection tasks as traditional statistical techniques are underpowered in high dimension. Second and third order interactions of these features pose a substantial combinatoric dimensional challenge. In computational biology, random forest (RF) classifiers are widely used due to their flexibility, powerful performance, their ability to rank features, and their robustness to the "P > > N" high-dimensional limitation that many matrix regression algorithms face. We propose binomialRF, a feature selection technique in RFs that provides an alternative interpretation for features using a correlated binomial distribution and scales efficiently to analyze multiway interactions. RESULTS: In both simulations and validation studies using datasets from the TCGA and UCI repositories, binomialRF showed computational gains (up to 5 to 300 times faster) while maintaining competitive variable precision and recall in identifying biomarkers' main effects and interactions. In two clinical studies, the binomialRF algorithm prioritizes previously-published relevant pathological molecular mechanisms (features) with high classification precision and recall using features alone, as well as with their statistical interactions alone. CONCLUSION: binomialRF extends upon previous methods for identifying interpretable features in RFs and brings them together under a correlated binomial distribution to create an efficient hypothesis testing algorithm that identifies biomarkers' main effects and interactions. Preliminary results in simulations demonstrate computational gains while retaining competitive model selection and classification accuracies. Future work will extend this framework to incorporate ontologies that provide pathway-level feature selection from gene expression input data.


Assuntos
Algoritmos , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/diagnóstico , Biologia Computacional/métodos , Feminino , Humanos , Neoplasias Renais/diagnóstico
8.
J Pers Med ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396440

RESUMO

Background: Developing patient-centric baseline standards that enable the detection of clinically significant outlier gene products on a genome-scale remains an unaddressed challenge required for advancing personalized medicine beyond the small pools of subjects implied by "precision medicine". This manuscript proposes a novel approach for reference standard development to evaluate the accuracy of single-subject analyses of transcriptomes and offers extensions into proteomes and metabolomes. In evaluation frameworks for which the distributional assumptions of statistical testing imperfectly model genome dynamics of gene products, artefacts and biases are confounded with authentic signals. Model confirmation biases escalate when studies use the same analytical methods in the discovery sets and reference standards. In such studies, replicated biases are confounded with measures of accuracy. We hypothesized that developing method-agnostic reference standards would reduce such replication biases. We propose to evaluate discovery methods with a reference standard derived from a consensus of analytical methods distinct from the discovery one to minimize statistical artefact biases. Our methods involve thresholding effect-size and expression-level filtering of results to improve consensus between analytical methods. We developed and released an R package "referenceNof1" to facilitate the construction of robust reference standards. Results: Since RNA-Seq data analysis methods often rely on binomial and negative binomial assumptions to non-parametric analyses, the differences create statistical noise and make the reference standards method dependent. In our experimental design, the accuracy of 30 distinct combinations of fold changes (FC) and expression counts (hereinafter "expression") were determined for five types of RNA analyses in two different datasets. This design was applied to two distinct datasets: Breast cancer cell lines and a yeast study with isogenic biological replicates in two experimental conditions. Furthermore, the reference standard (RS) comprised all RNA analytical methods with the exception of the method testing accuracy. To mitigate biases towards a specific analytical method, the pairwise Jaccard Concordance Index between observed results of distinct analytical methods were calculated for optimization. Optimization through thresholding effect-size and expression-level reduced the greatest discordances between distinct methods' analytical results and resulted in a 65% increase in concordance. Conclusions: We have demonstrated that comparing accuracies of different single-subject analysis methods for clinical optimization in transcriptomics requires a new evaluation framework. Reliable and robust reference standards, independent of the evaluated method, can be obtained under a limited number of parameter combinations: Fold change (FC) ranges thresholds, expression level cutoffs, and exclusion of the tested method from the RS development process. When applying anticonservative reference standard frameworks (e.g., using the same method for RS development and prediction), most of the concordant signal between prediction and Gold Standard (GS) cannot be confirmed by other methods, which we conclude as biased results. Statistical tests to determine DEGs from a single-subject study generate many biased results requiring subsequent filtering to increase reliability. Conventional single-subject studies pertain to one or a few patient's measures over time and require a substantial conceptual framework extension to address the numerous measures in genome-wide analyses of gene products. The proposed referenceNof1 framework addresses some of the inherent challenges for improving transcriptome scale single-subject analyses by providing a robust approach to constructing reference standards.

9.
Oncogene ; 39(10): 2103-2117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31804622

RESUMO

Rational new strategies are needed to treat tumors resistant to kinase inhibitors. Mechanistic studies of resistance provide fertile ground for development of new approaches. Cancer drug addiction is a paradoxical resistance phenomenon, well-described in MEK-ERK-driven solid tumors, in which drug-target overexpression promotes resistance but a toxic overdose of signaling if the inhibitor is withdrawn. This can permit prolonged control of tumors through intermittent dosing. We and others showed previously that cancer drug addiction arises also in the hematologic malignancy ALK-positive anaplastic large-cell lymphoma (ALCL) resistant to ALK-specific tyrosine kinase inhibitors (TKIs). This is driven by the overexpression of the fusion kinase NPM1-ALK, but the mechanism by which ALK overactivity drives toxicity upon TKI withdrawal remained obscure. Here we reveal the mechanism of ALK-TKI addiction in ALCL. We interrogated the well-described mechanism of MEK/ERK pathway inhibitor addiction in solid tumors and found it does not apply to ALCL. Instead, phosphoproteomics and confirmatory functional studies revealed that the STAT1 overactivation is the key mechanism of ALK-TKI addiction in ALCL. The withdrawal of TKI from addicted tumors in vitro and in vivo leads to overwhelming phospho-STAT1 activation, turning on its tumor-suppressive gene-expression program and turning off STAT3's oncogenic program. Moreover, a novel NPM1-ALK-positive ALCL PDX model showed a significant survival benefit from intermittent compared with continuous TKI dosing. In sum, we reveal for the first time the mechanism of cancer drug addiction in ALK-positive ALCL and the benefit of scheduled intermittent dosing in high-risk patient-derived tumors in vivo.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Linfoma Anaplásico de Células Grandes/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Anaplásico de Células Grandes/enzimologia , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Nucleofosmina , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica , Fator de Transcrição STAT3/genética
10.
Crit Care ; 23(1): 410, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842964

RESUMO

BACKGROUND: There is a compelling unmet medical need for biomarker-based models to risk-stratify patients with acute respiratory distress syndrome. Effective stratification would optimize participant selection for clinical trial enrollment by focusing on those most likely to benefit from new interventions. Our objective was to develop a prognostic, biomarker-based model for predicting mortality in adult patients with acute respiratory distress syndrome. METHODS: This is a secondary analysis using a cohort of 252 mechanically ventilated subjects with the diagnosis of acute respiratory distress syndrome. Survival to day 7 with both day 0 (first day of presentation) and day 7 sample availability was required. Blood was collected for biomarker measurements at first presentation to the intensive care unit and on the seventh day. Biomarkers included cytokine-chemokines, dual-functioning cytozymes, and vascular injury markers. Logistic regression, latent class analysis, and classification and regression tree analysis were used to identify the plasma biomarkers most predictive of 28-day ARDS mortality. RESULTS: From eight biologically relevant biomarker candidates, six demonstrated an enhanced capacity to predict mortality at day 0. Latent-class analysis identified two biomarker-based phenotypes. Phenotype A exhibited significantly higher plasma levels of angiopoietin-2, macrophage migration inhibitory factor, interleukin-8, interleukin-1 receptor antagonist, interleukin-6, and extracellular nicotinamide phosphoribosyltransferase (eNAMPT) compared to phenotype B. Mortality at 28 days was significantly higher for phenotype A compared to phenotype B (32% vs 19%, p = 0.04). CONCLUSIONS: An adult biomarker-based risk model reliably identifies ARDS subjects at risk of death within 28 days of hospitalization.


Assuntos
Biomarcadores/análise , Síndrome do Desconforto Respiratório/mortalidade , Medição de Risco/métodos , APACHE , Adulto , Biomarcadores/sangue , Citocinas/análise , Citocinas/sangue , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/análise , Proteína Antagonista do Receptor de Interleucina 1/sangue , Interleucina-1beta/análise , Interleucina-1beta/sangue , Interleucina-6/análise , Interleucina-6/sangue , Interleucina-8/análise , Interleucina-8/sangue , Oxirredutases Intramoleculares/análise , Oxirredutases Intramoleculares/sangue , Análise de Classes Latentes , Modelos Logísticos , Fatores Inibidores da Migração de Macrófagos/análise , Fatores Inibidores da Migração de Macrófagos/sangue , Masculino , Pessoa de Meia-Idade , Nicotinamida Fosforribosiltransferase/análise , Nicotinamida Fosforribosiltransferase/sangue , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/sangue , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/epidemiologia , Medição de Risco/normas , Receptores de Esfingosina-1-Fosfato/análise , Receptores de Esfingosina-1-Fosfato/sangue , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/sangue
11.
BMC Med Genomics ; 12(Suppl 5): 96, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296218

RESUMO

BACKGROUND: Gene expression profiling has benefited medicine by providing clinically relevant insights at the molecular candidate and systems levels. However, to adopt a more 'precision' approach that integrates individual variability including 'omics data into risk assessments, diagnoses, and therapeutic decision making, whole transcriptome expression needs to be interpreted meaningfully for single subjects. We propose an "all-against-one" framework that uses biological replicates in isogenic conditions for testing differentially expressed genes (DEGs) in a single subject (ss) in the absence of an appropriate external reference standard or replicates. To evaluate our proposed "all-against-one" framework, we construct reference standards (RSs) with five conventional replicate-anchored analyses (NOISeq, DEGseq, edgeR, DESeq, DESeq2) and the remainder were treated separately as single-subject sample pairs for ss analyses (without replicates). RESULTS: Eight ss methods (NOISeq, DEGseq, edgeR, mixture model, DESeq, DESeq2, iDEG, and ensemble) for identifying genes with differential expression were compared in Yeast (parental line versus snf2 deletion mutant; n = 42/condition) and a MCF7 breast-cancer cell line (baseline versus stimulated with estradiol; n = 7/condition). Receiver-operator characteristic (ROC) and precision-recall plots were determined for eight ss methods against each of the five RSs in both datasets. Consistent with prior analyses of these data, ~ 50% and ~ 15% DEGs were obtained in Yeast and MCF7 datasets respectively, regardless of the RSs method. NOISeq, edgeR, and DESeq were the most concordant for creating a RS. Single-subject versions of NOISeq, DEGseq, and an ensemble learner achieved the best median ROC-area-under-the-curve to compare two transcriptomes without replicates regardless of the RS method and dataset (> 90% in Yeast, > 0.75 in MCF7). Further, distinct specific single-subject methods perform better according to different proportions of DEGs. CONCLUSIONS: The "all-against-one" framework provides a honest evaluation framework for single-subject DEG studies since these methods are evaluated, by design, against reference standards produced by unrelated DEG methods. The ss-ensemble method was the only one to reliably produce higher accuracies in all conditions tested in this conservative evaluation framework. However, single-subject methods for identifying DEGs from paired samples need improvement, as no method performed with precision> 90% and obtained moderate levels of recall. http://www.lussiergroup.org/publications/EnsembleBiomarker.


Assuntos
Perfilação da Expressão Gênica/métodos , Medicina de Precisão , Perfilação da Expressão Gênica/normas , Humanos , Padrões de Referência
12.
Front Genet ; 10: 414, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31143202

RESUMO

RNA-Sequencing data offers an opportunity to enable precision medicine, but most methods rely on gene expression alone. To date, no methodology exists to identify and interpret alternative splicing patterns within pathways for an individual patient. This study develops methodology and conducts computational experiments to test the hypothesis that pathway aggregation of subject-specific alternatively spliced genes (ASGs) can inform upon disease mechanisms and predict survival. We propose the N-of-1-pathways Alternatively Spliced (N1PAS) method that takes an individual patient's paired-sample RNA-Seq isoform expression data (e.g., tumor vs. non-tumor, before-treatment vs. during-therapy) and pathway annotations as inputs. N1PAS quantifies the degree of alternative splicing via Hellinger distances followed by two-stage clustering to determine pathway enrichment. We provide a clinically relevant "odds ratio" along with statistical significance to quantify pathway enrichment. We validate our method in clinical samples and find that our method selects relevant pathways (p < 0.05 in 4/6 data sets). Extensive Monte Carlo studies show N1PAS powerfully detects pathway enrichment of ASGs while adequately controlling false discovery rates. Importantly, our studies also unveil highly heterogeneous single-subject alternative splicing patterns that cohort-based approaches overlook. Finally, we apply our patient-specific results to predict cancer survival (FDR < 20%) while providing diagnostics in pursuit of translating transcriptome data into clinically actionable information. Software available at https://github.com/grizant/n1pas/tree/master.

13.
AMIA Annu Symp Proc ; 2019: 582-591, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32308852

RESUMO

Calculating Differentially Expressed Genes (DEGs) from RNA-sequencing requires replicates to estimate gene-wise variability, a requirement that is at times financially or physiologically infeasible in clinics. By imposing restrictive transcriptome-wide assumptions limiting inferential opportunities of conventional methods (edgeR, NOISeq-sim, DESeq, DEGseq), comparing two conditions without replicates (TCWR) has been proposed, but not evaluated. Under TCWR conditions (e.g., unaffected tissue vs. tumor), differences of transformed expression of the proposed individualized DEG (iDEG) method follow a distribution calculated across a local partition of related transcripts at baseline expression; thereafter the probability of each DEG is estimated by empirical Bayes with local false discovery rate control using a two-group mixture model. In extensive simulation studies of TCWR methods, iDEG and NOISeq are more accurate at 5%90%, recall>75%, false_positive_rate<1%) and 30%

Assuntos
Algoritmos , Perfilação da Expressão Gênica , Análise de Sequência de RNA/métodos , Transcriptoma , Teorema de Bayes , Genômica , Humanos , Conceitos Matemáticos , Modelos Teóricos , Medicina de Precisão
14.
Pac Symp Biocomput ; 23: 507-511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29218909

RESUMO

Noncoding DNA - once called "junk" has revealed itself to be full of function. Technology development has allowed researchers to gather genome-scale data pointing towards complex regulatory regions, expression and function of noncoding RNA genes, and conserved elements. Variation in these regions has been tied to variation in biological function and human disease. This PSB session tackles the problem of handling, analyzing and interpreting the data relating to variation in and interactions between noncoding regions through computational biology. We feature an invited speaker to how variation in transcription factor coding sequences impacts on sequence preference, along with submitted papers that span graph based methods, integrative analyses, machine learning, and dimension reduction to explore questions of basic biology, cancer, diabetes, and clinical relevance.

15.
Stat Methods Med Res ; 27(12): 3797-3813, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-28552011

RESUMO

Modern precision medicine increasingly relies on molecular data analytics, wherein development of interpretable single-subject ("N-of-1") signals is a challenging goal. A previously developed global framework, N-of-1- pathways, employs single-subject gene expression data to identify differentially expressed gene set pathways in an individual patient. Unfortunately, the limited amount of data within the single-subject, N-of-1 setting makes construction of suitable statistical inferences for identifying differentially expressed gene set pathways difficult, especially when non-trivial inter-gene correlation is present. We propose a method that exploits external information on gene expression correlations to cluster positively co-expressed genes within pathways, then assesses differential expression across the clusters within a pathway. A simulation study illustrates that the cluster-based approach exhibits satisfactory false-positive error control and reasonable power to detect differentially expressed gene set pathways. An example with a single N-of-1 patient's triple negative breast cancer data illustrates use of the methodology.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Modelos Estatísticos , Neoplasias de Mama Triplo Negativas/genética , Algoritmos , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Medicina de Precisão , Análise de Sequência de RNA
16.
BMC Med Genomics ; 10(Suppl 1): 27, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28589853

RESUMO

BACKGROUND: Transcriptome analytic tools are commonly used across patient cohorts to develop drugs and predict clinical outcomes. However, as precision medicine pursues more accurate and individualized treatment decisions, these methods are not designed to address single-patient transcriptome analyses. We previously developed and validated the N-of-1-pathways framework using two methods, Wilcoxon and Mahalanobis Distance (MD), for personal transcriptome analysis derived from a pair of samples of a single patient. Although, both methods uncover concordantly dysregulated pathways, they are not designed to detect dysregulated pathways with up- and down-regulated genes (bidirectional dysregulation) that are ubiquitous in biological systems. RESULTS: We developed N-of-1-pathways MixEnrich, a mixture model followed by a gene set enrichment test, to uncover bidirectional and concordantly dysregulated pathways one patient at a time. We assess its accuracy in a comprehensive simulation study and in a RNA-Seq data analysis of head and neck squamous cell carcinomas (HNSCCs). In presence of bidirectionally dysregulated genes in the pathway or in presence of high background noise, MixEnrich substantially outperforms previous single-subject transcriptome analysis methods, both in the simulation study and the HNSCCs data analysis (ROC Curves; higher true positive rates; lower false positive rates). Bidirectional and concordant dysregulated pathways uncovered by MixEnrich in each patient largely overlapped with the quasi-gold standard compared to other single-subject and cohort-based transcriptome analyses. CONCLUSION: The greater performance of MixEnrich presents an advantage over previous methods to meet the promise of providing accurate personal transcriptome analysis to support precision medicine at point of care.


Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias de Células Escamosas/genética , Medicina de Precisão , Curva ROC
17.
Sci Rep ; 7(1): 4237, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652588

RESUMO

Sarcoidosis is a granulomatous lung disorder of unknown cause. The majority of individuals with sarcoidosis spontaneously achieve full remission (uncomplicated sarcoidosis), however, ~20% of sarcoidosis-affected individuals experience progressive lung disease or cardiac and nervous system involvement (complicated sarcoidosis). We investigated peripheral blood mononuclear cell (PBMC) microRNA and protein-coding gene expression data from healthy controls and patients with uncomplicated or complicated sarcoidosis. We identified 46 microRNAs and 1,559 genes that were differentially expressed across a continuum of sarcoidosis severity (healthy control → uncomplicated sarcoidosis → complicated sarcoidosis). A total of 19 microRNA-mRNA regulatory pairs were identified within these deregulated microRNAs and mRNAs, which consisted of 17 unique protein-coding genes yielding a 17-gene signature. Pathway analysis of the 17-gene signature revealed Jak-STAT signaling pathway as the most significantly represented pathway. A severity score was assigned to each patient based on the expression of the 17-gene signature and a significant increasing trend in the severity score was observed from healthy control, to uncomplicated sarcoidosis, and finally to complicated sarcoidosis. In addition, this microRNA-regulated gene signature differentiates sarcoidosis patients from healthy controls in independent validation cohorts. Our study suggests that PBMC gene expression is useful in diagnosis of sarcoidosis.


Assuntos
Proteínas Sanguíneas/genética , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Sarcoidose/genética , Adulto , Idoso , Proteínas Sanguíneas/classificação , Feminino , Humanos , Janus Quinases/genética , Leucócitos Mononucleares , Masculino , MicroRNAs/sangue , MicroRNAs/classificação , Pessoa de Meia-Idade , Fatores de Transcrição STAT/genética , Sarcoidose/sangue , Sarcoidose/classificação , Sarcoidose/fisiopatologia , Índice de Gravidade de Doença , Transdução de Sinais/genética
18.
Am J Respir Crit Care Med ; 196(2): 208-219, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157391

RESUMO

RATIONALE: Differences in the lung microbial community influence idiopathic pulmonary fibrosis (IPF) progression. Whether the lung microbiome influences IPF host defense remains unknown. OBJECTIVES: To explore the host immune response and microbial interaction in IPF as they relate to progression-free survival (PFS), fibroblast function, and leukocyte phenotypes. METHODS: Paired microarray gene expression data derived from peripheral blood mononuclear cells as well as 16S ribosomal RNA sequencing data from bronchoalveolar lavage obtained as part of the COMET-IPF (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in Idiopathic Pulmonary Fibrosis) study were used to conduct association pathway analyses. The responsiveness of paired lung fibroblasts to Toll-like receptor 9 (TLR9) stimulation by CpG-oligodeoxynucleotide (CpG-ODN) was integrated into microbiome-gene expression association analyses for a subset of individuals. The relationship between associated pathways and circulating leukocyte phenotypes was explored by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Down-regulation of immune response pathways, including nucleotide-binding oligomerization domain (NOD)-, Toll-, and RIG1-like receptor pathways, was associated with worse PFS. Ten of the 11 PFS-associated pathways correlated with microbial diversity and individual genus, with species accumulation curve richness as a hub. Higher species accumulation curve richness was significantly associated with inhibition of NODs and TLRs, whereas increased abundance of Streptococcus correlated with increased NOD-like receptor signaling. In a network analysis, expression of up-regulated signaling pathways was strongly associated with decreased abundance of operational taxonomic unit 1341 (OTU1341; Prevotella) among individuals with fibroblasts responsive to CpG-ODN stimulation. The expression of TLR signaling pathways was also linked to CpG-ODN responsive fibroblasts, OTU1341 (Prevotella), and Shannon index of microbial diversity in a network analysis. Lymphocytes expressing C-X-C chemokine receptor 3 CD8 significantly correlated with OTU1348 (Staphylococcus). CONCLUSIONS: These findings suggest that host-microbiome interactions influence PFS and fibroblast responsiveness.


Assuntos
Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/microbiologia , Imunidade Inata/imunologia , Microbiota/imunologia , Lavagem Broncoalveolar , Intervalo Livre de Doença , Regulação para Baixo/imunologia , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade
19.
J Biomed Inform ; 66: 32-41, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007582

RESUMO

MOTIVATION: Understanding dynamic, patient-level transcriptomic response to therapy is an important step forward for precision medicine. However, conventional transcriptome analysis aims to discover cohort-level change, lacking the capacity to unveil patient-specific response to therapy. To address this gap, we previously developed two N-of-1-pathways methods, Wilcoxon and Mahalanobis distance, to detect unidirectionally responsive transcripts within a pathway using a pair of samples from a single subject. Yet, these methods cannot recognize bidirectionally (up and down) responsive pathways. Further, our previous approaches have not been assessed in presence of background noise and are not designed to identify differentially expressed mRNAs between two samples of a patient taken in different contexts (e.g. cancer vs non cancer), which we termed responsive transcripts (RTs). METHODS: We propose a new N-of-1-pathways method, k-Means Enrichment (kMEn), that detects bidirectionally responsive pathways, despite background noise, using a pair of transcriptomes from a single patient. kMEn identifies transcripts responsive to the stimulus through k-means clustering and then tests for an over-representation of the responsive genes within each pathway. The pathways identified by kMEn are mechanistically interpretable pathways significantly responding to a stimulus. RESULTS: In ∼9000 simulations varying six parameters, superior performance of kMEn over previous single-subject methods is evident by: (i) improved precision-recall at various levels of bidirectional response and (ii) lower rates of false positives (1-specificity) when more than 10% of genes in the genome are differentially expressed (background noise). In a clinical proof-of-concept, personal treatment-specific pathways identified by kMEn correlate with therapeutic response (p-value<0.01). CONCLUSION: Through improved single-subject transcriptome dynamics of bidirectionally-regulated signals, kMEn provides a novel approach to identify mechanism-level biomarkers.


Assuntos
Perfilação da Expressão Gênica , Medicina de Precisão , Transcriptoma , Análise por Conglomerados , Interpretação Estatística de Dados , Humanos , RNA Mensageiro
20.
Artigo em Inglês | MEDLINE | ID: mdl-27482468

RESUMO

Functionally altered biological mechanisms arising from disease-associated polymorphisms, remain difficult to characterize when those variants are intergenic, or, fall between genes. We sought to identify shared downstream mechanisms by which inter- and intragenic single nucleotide polymorphisms (SNPs) contribute to a specific physiopathology. Using computational modeling of 2 million pairs of disease-associated SNPs drawn from genome wide association studies (GWAS), integrated with expression Quantitative Trait Loci (eQTL) and Gene Ontology functional annotations, we predicted 3,870 inter-intra and inter-intra SNP pairs with convergent biological mechanisms (FDR<0.05). These prioritized SNP pairs with overlapping mRNA targets or similar functional annotations were more likely to be associated with the same disease than unrelated pathologies (OR>12). We additionally confirmed synergistic and antagonistic genetic interactions for a subset of prioritized SNP pairs in independent studies of Alzheimer's disease (entropy p=0.046), bladder cancer (entropy p=0.039), and rheumatoid arthritis (PheWAS case-control p<10-4). Using ENCODE datasets, we further statistically validated that the biological mechanisms shared within prioritized SNP pairs are frequently governed by matching transcription factor binding sites and long-range chromatin interactions. These results provide a "roadmap" of disease mechanisms emerging from GWAS and further identify candidate therapeutic targets among downstream effectors of intergenic SNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA