Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 56: 152-164, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571009

RESUMO

Diminished colonic health is associated with various age-related pathologies. Calorie restriction (CR) is an effective strategy to increase healthy lifespan, although underlying mechanisms are not fully elucidated. Here, we report the effects of lifelong CR on indicators of colonic health in aging C57Bl/6J mice. Compared to an ad libitum control and moderate-fat diet, 30% energy reduction was associated with attenuated immune- and inflammation-related gene expression in the colon. Furthermore, expression of genes involved in lipid metabolism was higher upon CR, which may point towards efficient regulation of energy metabolism. The relative abundance of bacteria considered beneficial to colonic health, such as Bifidobacterium and Lactobacillus, increased in the mice exposed to CR for 28 months as compared to the other diet groups. We found lower plasma levels of interleukin-6 and lower levels of various metabolites, among which are bile acids, in the colonic luminal content of CR-exposed mice as compared to the other diet groups. Switching from CR to an ad libitum moderate-fat diet at old age (24 months) revealed remarkable phenotypic plasticity in terms of gene expression, microbiota composition and metabolite levels, although expression of a subset of genes remained CR-associated. This study demonstrated in a comprehensive way that CR affects indicators of colonic health in aging mice. Our findings provide unique leads for further studies that need to address optimal and feasible strategies for prolonged energy deprivation, which may contribute to healthy aging.


Assuntos
Envelhecimento , Restrição Calórica , Colo/fisiologia , Microbioma Gastrointestinal , Animais , Ácidos e Sais Biliares/metabolismo , Colo/microbiologia , Dieta , Ingestão de Energia , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação , Interleucina-6/sangue , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
2.
Sci Rep ; 6: 30484, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27470139

RESUMO

Fibroblast growth factor 21 (Fgf21) has emerged as a potential plasma marker to diagnose non-alcoholic fatty liver disease (NAFLD). To study the molecular processes underlying the association of plasma Fgf21 with NAFLD, we explored the liver transcriptome data of a mild NAFLD model of aging C57BL/6J mice at 12, 24, and 28 months of age. The plasma Fgf21 level significantly correlated with intrahepatic triglyceride content. At the molecular level, elevated plasma Fgf21 levels were associated with dysregulated metabolic and cancer-related pathways. The up-regulated Fgf21 levels in NAFLD were implied to be a protective response against the NAFLD-induced adverse effects, e.g. lipotoxicity, oxidative stress and endoplasmic reticulum stress. An in vivo PPARα challenge demonstrated the dysregulation of PPARα signalling in the presence of NAFLD, which resulted in a stochastically increasing hepatic expression of Fgf21. Notably, elevated plasma Fgf21 was associated with declining expression of Klb, Fgf21's crucial co-receptor, which suggests a resistance to Fgf21. Therefore, although liver fat accumulation is a benign stage of NAFLD, the elevated plasma Fgf21 likely indicated vulnerability to metabolic stressors that may contribute towards progression to end-stage NAFLD. In conclusion, plasma levels of Fgf21 reflect liver fat accumulation and dysregulation of metabolic pathways in the liver.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Transdução de Sinais , Envelhecimento/sangue , Animais , Dieta , Regulação para Baixo/genética , Fatores de Crescimento de Fibroblastos/sangue , Redes Reguladoras de Genes , Genes Neoplásicos , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Transdução de Sinais/genética , Regulação para Cima/genética
3.
Clin Epigenetics ; 7: 121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26568774

RESUMO

BACKGROUND: Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via B-vitamins later in life, and how this relates to health and disease, is not exactly known. The aim of this study was to identify effects of long-term supplementation with folic acid and vitamin B12 on genome-wide DNA methylation in elderly subjects. This project was part of a randomized, placebo-controlled trial on effects of supplemental intake of folic acid and vitamin B12 on bone fracture incidence (B-vitamins for the PRevention Of Osteoporotic Fractures (B-PROOF) study). Participants with mildly elevated homocysteine levels, aged 65-75 years, were randomly assigned to take 400 µg folic acid and 500 µg vitamin B12 per day or a placebo during an intervention period of 2 years. DNA was isolated from buffy coats, collected before and after intervention, and genome-wide DNA methylation was determined in 87 participants (n = 44 folic acid/vitamin B12, n = 43 placebo) using the Infinium HumanMethylation450 BeadChip. RESULTS: After intervention with folic acid and vitamin B12, 162 (versus 14 in the placebo group) of the 431,312 positions were differentially methylated as compared to baseline. Comparisons of the DNA methylation changes in the participants receiving folic acid and vitamin B12 versus placebo revealed one single differentially methylated position (cg19380919) with a borderline statistical significance. However, based on the analyses of differentially methylated regions (DMRs) consisting of multiple positions, we identified 6 regions that differed statistically significantly between the intervention and placebo group. Pronounced changes were found for regions in the DIRAS3, ARMC8, and NODAL genes, implicated in carcinogenesis and early embryonic development. Furthermore, serum levels of folate and vitamin B12 or plasma homocysteine were related to DNA methylation of 173, 425, and 11 regions, respectively. Interestingly, for several members of the developmental HOX genes, DNA methylation was related to serum levels of folate. CONCLUSIONS: Long-term supplementation with folic acid and vitamin B12 in elderly subjects resulted in effects on DNA methylation of several genes, among which genes implicated in developmental processes.

4.
J Cachexia Sarcopenia Muscle ; 6(3): 253-68, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401472

RESUMO

BACKGROUND: In rodent models, caloric restriction (CR) with maintenance of adequate micronutrient supply has been reported to increase lifespan and to reduce age-induced muscle loss (sarcopenia) during ageing. In the present study, we further investigated effects of CR on the onset and severity of sarcopenia in ageing male C57BL/6 J mice. The aim of this study was to investigate whether CR induces changes in behaviour of the animals that could contribute to the pronounced health-promoting effects of CR in rodents. In addition, we aimed to investigate in more detail the effects of CR on the onset and severity of sarcopenia. METHODS: The mice received either an ad libitum diet (control) or a diet matching 70 E% of the control diet (C). Daily activity, body composition (dual energy X-ray absorptiometry), grip strength, insulin sensitivity, and general agility and balance were determined at different ages. Mice were killed at 4, 12, 24, and 28 months. Skeletal muscles of the hind limb were dissected, and the muscle extensor digitorum longus muscle was used for force-frequency measurements. The musculus tibialis was used for real-time quantitative PCR analysis. RESULTS: From the age of 12 months, CR animals were nearly half the weight of the control animals, which was mainly related to a lower fat mass. In the control group, the hind limb muscles showed a decline in mass at 24 or 28 months of age, which was not present in the CR group. Moreover, insulin sensitivity (oral glucose tolerance test) was higher in this group and the in vivo and ex vivo grip strength did not differ between the two groups. In the hours before food was provided, CR animals were far more active than control animals, while total daily activity was not increased. Moreover, agility test indicated that CR animals were better climbers and showed more climbing behaviours. CONCLUSIONS: Our study confirms earlier findings that in CR animals less sarcopenia is present. The mice on the CR diet, however, showed specific behavioural changes characterized by higher bursts of activity within a short time frame before consumption of a 70 E% daily meal. We hypothesize that the positive effects of CR on muscle maintenance in rodents are not merely a direct consequence of a lower energy intake but also related to a more active behaviour in a specific time frame. The burst of activity just before immediate start of eating, might lead to a highly effective use of the restricted protein sources available.

5.
Br J Pharmacol ; 172(1): 24-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24780080

RESUMO

BACKGROUND AND PURPOSE: N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA. EXPERIMENTAL APPROACH: Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2 (-/-) and CB2 (+/+) mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity(®) Pathways Analysis. KEY RESULTS: CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-ß, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX-2-mediated pathways. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2. LINKED ARTICLES: This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2014.171.issue-6/issuetoc.


Assuntos
Inibidores de Ciclo-Oxigenase 2/farmacologia , Desidroepiandrosterona/farmacologia , Macrófagos/efeitos dos fármacos , Anilidas/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Canfanos/farmacologia , Linhagem Celular , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Indenos/farmacologia , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Rimonabanto , Rosiglitazona , Tiazolidinedionas/farmacologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Biol Sex Differ ; 5: 11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25243059

RESUMO

BACKGROUND: There is increasing appreciation for sexually dimorphic effects, but the molecular mechanisms underlying these effects are only partially understood. In the present study, we explored transcriptomics and epigenetic differences in the small intestine and colon of prepubescent male and female mice. In addition, the microbiota composition of the colonic luminal content has been examined. METHODS: At postnatal day 14, male and female C57BL/6 mice were sacrificed and the small intestine, colon and content of luminal colon were isolated. Gene expression of both segments of the intestine was analysed by microarray analysis. DNA methylation of the promoter regions of selected sexually dimorphic genes was examined by pyrosequencing. Composition of the microbiota was explored by deep sequencing. RESULTS: Sexually dimorphic genes were observed in both segments of the intestine of 2-week-old mouse pups, with a stronger effect in the small intestine. Amongst the total of 349 genes displaying a sexually dimorphic effect in the small intestine and/or colon, several candidates exhibited a previously established function in the intestine (i.e. Nts, Nucb2, Alox5ap and Retnlγ). In addition, differential expression of genes linked to intestinal bowel disease (i.e. Ccr3, Ccl11 and Tnfr) and colorectal cancer development (i.e. Wt1 and Mmp25) was observed between males and females. Amongst the genes displaying significant sexually dimorphic expression, nine genes were histone-modifying enzymes, suggesting that epigenetic mechanisms might be a potential underlying regulatory mechanism. However, our results reveal no significant changes in DNA methylation of analysed CpGs within the selected differentially expressed genes. With respect to the bacterial community composition in the colon, a dominant effect of litter origin was found but no significant sex effect was detected. However, a sex effect on the dominance of specific taxa was observed. CONCLUSIONS: This study reveals molecular dissimilarities between males and females in the small intestine and colon of prepubescent mice, which might underlie differences in physiological functioning and in disease predisposition in the two sexes.

7.
Age (Dordr) ; 36(3): 9648, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24789080

RESUMO

Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.


Assuntos
Envelhecimento/genética , Epigênese Genética/genética , Regulação da Expressão Gênica no Desenvolvimento , Leucócitos Mononucleares/metabolismo , RNA/genética , Adulto , Idoso , Envelhecimento/metabolismo , Células Cultivadas , Metilação de DNA , Genoma Humano , Voluntários Saudáveis , Humanos , Leucócitos Mononucleares/citologia , Masculino , Pessoa de Meia-Idade
8.
Mol Nutr Food Res ; 57(4): 698-708, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23132835

RESUMO

SCOPE: Low concentrations of folate, other B vitamins, and methionine are associated with colorectal cancer risk, possibly by changing DNA methylation patterns. Here, we examine whether plasma concentrations of B vitamins and methionine are associated with methylation of long interspersed nuclear element-1 (LINE-1) among those at high risk of colorectal cancer, i.e. patients with at least one histologically confirmed colorectal adenoma (CRA) in their life. METHODS AND RESULTS: We used LINE-1 bisulfite pyrosequencing to measure global DNA methylation levels in leukocytes of 281 CRA patients. Multivariable linear regression was used to assess associations between plasma B vitamin concentrations and LINE-1 methylation levels. Plasma folate was inversely associated with LINE-1 methylation in CRA patients, while plasma methionine was positively associated with LINE-1 methylation. CONCLUSION: This study does not provide evidence that in CRA patients, plasma folate concentrations are positively related to LINE-1 methylation in leukocytes but does suggest a direct association between plasma methionine and LINE-1 methylation in leukocytes.


Assuntos
Neoplasias Colorretais/genética , Metilação de DNA/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Elementos Nucleotídeos Longos e Dispersos/efeitos dos fármacos , Complexo Vitamínico B/sangue , Adenoma/genética , Adenoma/patologia , Adolescente , Adulto , Idoso , Neoplasias Colorretais/patologia , Estudos Transversais , Feminino , Ácido Fólico/sangue , Seguimentos , Genótipo , Humanos , Leucócitos/metabolismo , Estilo de Vida , Modelos Lineares , Masculino , Metionina/sangue , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Risco , Inquéritos e Questionários , Adulto Jovem
9.
Bone ; 46(2): 514-23, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19815105

RESUMO

S-adenosylmethionine (SAM)-dependent methylation of biological molecules including DNA and proteins is rapidly being uncovered as a critical mechanism for regulation of cellular processes. We investigated the effects of reduced SAM-dependent methylation on osteoblast differentiation by using periodate oxidized adenosine (ADOX), an inhibitor of SAM-dependent methyltransferases. The capacity of this agent to modulate osteoblast differentiation was analyzed under non-osteogenic control conditions and during growth factor-induced differentiation and compared with the effect of inhibition of DNA methylation by 5-Aza-2'-deoxycytidine (5-Aza-CdR). Without applying specific osteogenic triggers, both ADOX and 5-Aza-CdR induced mRNA expression of the osteoblast markers Alp, Osx, and Ocn in murine C2C12 cells. Under osteogenic conditions, ADOX inhibited differentiation of both human mesenchymal stem cells and C2C12 cells. Gene expression analysis of early (Msx2, Dlx5, Runx2) and late (Alp, Osx, Ocn) osteoblast markers during bone morphogenetic protein 2-induced C2C12 osteoblast differentiation revealed that ADOX only reduced expression of the late phase Runx2 target genes. By using a Runx2-responsive luciferase reporter (6xOSE), we showed that ADOX reduced the activity of Runx2, while 5-Aza-CdR had no effect. Taken together, our data suggest that decreased SAM-dependent methyltransferase activity leads to impaired osteoblast differentiation via non-DNA-dependent methylation mechanisms and that methylation is a regulator of Runx2-controlled gene expression.


Assuntos
Diferenciação Celular , Metilação de DNA , Osteoblastos/citologia , Osteoblastos/metabolismo , Adenosina/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Azacitidina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Metilação de DNA/efeitos dos fármacos , Humanos , Camundongos , Especificidade de Órgãos/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA