Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765474

RESUMO

Amaranths (Amaranthus L.) are multi-use crop species renowned for their nutritional quality and their tolerance to biotic and abiotic stresses. Since the soil salinity of croplands is a growing problem worldwide, we tested the salinity tolerance of six grain and two leaf cultivars of Amaranthus cruentus L. The plants were grown for 53 days under hydroponic conditions at 0, 50 and 100 mM NaCl. We investigated the growth rate, photosynthetic activity, mineral content, pigments and biochemical compounds involved in oxidative stress. Although 100 mM NaCl always decreased biomass production, we highlighted Don Leon and K91 as tolerant cultivars under moderate salt stress (50 mM NaCl). Under salinity, sodium accumulated more in the shoots than in the roots, particularly in the stems. Sodium accumulation in the plants decreased the net photosynthetic rate, transpiration rate and stomatal conductance but increased water use efficiency, and it decreased chlorophyll, betalain and polyphenol content in the leaves. It also decreased the foliar content of calcium, magnesium and potassium but not the iron and zinc content. The physiological parameters responded differently to sodium accumulation depending on the cultivar, suggesting a different relative importance of ionic and osmotic phases of salt stress among cultivars. Our results allowed us to identify the morpho-physiological traits of the cultivars with different salt tolerance levels.

2.
Int J Phytoremediation ; 24(5): 483-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34340621

RESUMO

Remediation of crude oil-impacted areas is a major pervasive concern in various environmental conditions. The major aim of this study was to investigate the collaboration of vetiver grass (Vetiveria zizanioides L.) and petroleum hydrocarbon-degrading bacteria to clean up contaminated soils. Vetiver grass and five native bacterial isolates were used in one consortium to remediate contaminated soil by crude oil at various concentrations (2.0, 4.0, 6.0 8.0, 10, and 12.0% woil/wsoil). The presence of isolated bacteria caused a significant (p < 0.05) increment of root-shoot ratio of vetiver in contaminated soils in comparison to non-contaminated soil. The combination of vetiver and bacterial consortium revealed efficient dissipation of more than 30% of low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and more than 50% of high-molecular-weight PAHs in all crude oil concentrations. The removal of n-alkanes in the simultaneous presence of the bacteria and plant was more than 70.0% at 10.0% of oil concentration, whereas the removals in control were 20.7, 13.7 and 9.2%, respectively. The hydrocarbons dissipation efficiency of applied treatments decreased at 12.0% of contamination. It is concluded that a combination of vetiver grass and the isolated bacteria could be a feasible strategy for remediation of crude oil-polluted soils. Novelty statementDetermination of the responses of vetiver grass under different crude oil concentrations is one of the novelties of the present study, which is helpful for demonstrating plant tolerance on polluted environments. Also, it adds information about the potential of this grass to clean up crude oil-polluted soils solely as well as in the presence of promising selected bacterial strains.


Assuntos
Vetiveria , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Solo , Poluentes do Solo/análise
3.
Plants (Basel) ; 10(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066989

RESUMO

Previous research has demonstrated that rapeseed sprouts obtained under salinity demonstrate greater phenolic content and antioxidant activity compared to those sprouted with distilled water. This work aimed to test the hypothesis that these effects of salinity may persist into the next generation, so that offspring seeds of plants grown under salt stress may give edible sprouts with increased phenolic content and antioxidant activity. Plants of one rapeseed cultivar were grown in pots with 0, 100 and 200 mM NaCl, isolated from each other at flowering to prevent cross-pollination. Offspring seeds harvested from each salinity treatment were then sprouted with distilled water. We performed the extraction of free and bound phenolic fractions of sprouts and, in each fraction (methanolic extract), we determined the total polyphenols (P), flavonoids, (F), and tannins (T) with Folin-Ciocalteu reagent, the phenolic acids (PAs) by ultra-high-performance liquid chromatographs (UHPLC) analysis, and the antioxidant activity with three tests (2,2-diphenyl-1-picrylhydrazyl-hydrate, DPPH; ferric reducing antioxidant power, FRAP; 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid] diammonium salt, ABTS). Individual seed weight was slightly decreased by salinity, whereas germination performance was improved, with a lower mean germination time for salted treatments. No significant differences were observed among treatments for P, F and T, except for bound P, while, in most cases, single PAs (as free, bound and total fractions) and antioxidant activity were significantly increased in salted treatments. Our results open new perspectives for the elicitation of secondary metabolites in the offspring seeds by growing parental plants under stressing conditions, imposed on purpose or naturally occurring.

4.
J Sci Food Agric ; 101(15): 6211-6219, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33913529

RESUMO

BACKGROUND: Amaranthus cruentus is a promising leafy vegetable with high nutritional value and is able to cope with salt stress but the impact of sodium chloride (NaCl) on its main properties have not been studied in detail. Plants from two contrasting cultivars (Rouge: salt-tolerant and Locale: salt-sensitive) were exposed to NaCl (0, 30, 60 and 90 mmol L-1 ) in nutrient solution for 2 weeks. Plant growth, mineral content, oxidative status and antioxidant concentration, salicylic acid concentration, protein content and amino acid profile were analyzed in the harvested leaves. RESULTS: Low dose (30 mmol L-1 NaCl) increased plant growth while Na+ accumulated to higher extent in salt-sensitive Locale than in salt-tolerant Rouge. A total of 30 mmol L-1 NaCl increased magnesium (Mg), phosphorus (P) and iron (Fe) content, as well as total antioxidant activity, ascorbate, phenolics, α-tocopherol and carotenoids content to higher extent in cultivar (cv.) Rouge than in cv. Locale. Low (30 mmol L-1 ) and moderate salinities (60 mmol L-1 ) increased γ-tocopherol and total protein in cv. Locale. They also increased lysine, valine, methionine and proline concentration as well as chemical score of protein in this cultivar. The highest NaCl (90 mmol L-1 ) dose had a detrimental impact on both cultivars. CONCLUSIONS: It is concluded that A. cruentus is a promising plant species for saline agriculture since moderate doses of salt improve both quantitative and qualitative parameters in cultivar dependent manner. © 2021 Society of Chemical Industry.


Assuntos
Amaranthus/metabolismo , Aminoácidos/química , Antioxidantes/análise , Folhas de Planta/química , Cloreto de Sódio/análise , Amaranthus/química , Amaranthus/crescimento & desenvolvimento , Aminoácidos/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Tolerância ao Sal , Cloreto de Sódio/metabolismo
5.
Environ Sci Pollut Res Int ; 28(28): 37963-37977, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33728605

RESUMO

Textile hemp (Cannabis sativa L.) is a non-edible multipurpose crop suitable for fiber production and/or phytoremediation on moderately heavy metal-contaminated soils. Experiments were conducted in nutrient solution to assess the short-term impact of silicon (Si), a well-known beneficial element, on plants exposed to 20 µM cadmium (Cd) in nutrient solution. Cd decreased plant growth and affected photosynthesis through non-stomatal effects. Cd translocation factor was higher than 1, confirming the interest of hemp for phytoextraction purposes. Additional Si did not improve plant growth after 1 week of treatment but decreased Cd accumulation in all organs and improved water use efficiency through a decrease in transpiration rate. Si had only marginal impact on Cd distribution among organs. It increased glutathione and phytochelatin synthesis allowing the plants to efficiently cope with oxidative stress through the improvement of Cd sequestration on thiol groups in the roots. Si may thus have a fast impact on the plant behavior before the occurrence of plant growth stimulation.


Assuntos
Cannabis , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Raízes de Plantas/química , Silício , Poluentes do Solo/análise
6.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008776

RESUMO

Currently, seed priming is reported as an efficient and low-cost approach to increase crop yield, which could not only promote seed germination and improve plant growth state but also increase abiotic stress tolerance. Salinity represents one of the most significant abiotic stresses that alters multiple processes in plants. The accumulation of polyamines (PAs) in response to salt stress is one of the most remarkable plant metabolic responses. This paper examined the effect of osmopriming on endogenous polyamine metabolism at the germination and early seedling development of Brassica napus in relation to salinity tolerance. Free, conjugated and bound polyamines were analyzed, and changes in their accumulation were discussed with literature data. The most remarkable differences between the corresponding osmoprimed and unprimed seeds were visible in the free (spermine) and conjugated (putrescine, spermidine) fractions. The arginine decarboxylase pathway seems to be responsible for the accumulation of PAs in primed seeds. The obvious impact of seed priming on tyramine accumulation was also demonstrated. Moreover, the level of ethylene increased considerably in seedlings issued from primed seeds exposed to salt stress. It can be concluded that the polyamines are involved in creating the beneficial effect of osmopriming on germination and early growth of Brassica napus seedlings under saline conditions through moderate changes in their biosynthesis and accumulation.


Assuntos
Vias Biossintéticas , Brassica napus/crescimento & desenvolvimento , Etilenos/biossíntese , Germinação , Osmose , Poliaminas/metabolismo , Estresse Salino , Sementes/crescimento & desenvolvimento
7.
Cells ; 9(12)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348837

RESUMO

As a common pollutant, cadmium (Cd) is one of the most toxic heavy metals accumulating in agricultural soils through anthropogenic activities. The uptake of Cd by plants is the main entry route into the human food chain, whilst in plants it elicits oxidative stress by unbalancing the cellular redox status. Medicago sativa was subjected to chronic Cd stress for five months. Targeted and untargeted metabolic analyses were performed. Long-term Cd exposure altered the amino acid composition with levels of asparagine, histidine and proline decreasing in stems but increasing in leaves. This suggests tissue-specific metabolic stress responses, which are often not considered in environmental studies focused on leaves. In stem tissue, profiles of secondary metabolites were clearly separated between control and Cd-exposed plants. Fifty-one secondary metabolites were identified that changed significantly upon Cd exposure, of which the majority are (iso)flavonoid conjugates. Cadmium exposure stimulated the phenylpropanoid pathway that led to the accumulation of secondary metabolites in stems rather than cell wall lignification. Those metabolites are antioxidants mitigating oxidative stress and preventing cellular damage. By an adequate adjustment of its metabolic composition, M. sativa reaches a new steady state, which enables the plant to acclimate under chronic Cd stress.


Assuntos
Cádmio/toxicidade , Medicago sativa/efeitos dos fármacos , Aminoácidos/análise , Cádmio/química , Cádmio/metabolismo , Parede Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonas/química , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Glutationa/análise , Medicago sativa/genética , Medicago sativa/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Poliaminas/análise , Poliaminas/isolamento & purificação , Análise de Componente Principal , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade
8.
Chemosphere ; 233: 954-965, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31340423

RESUMO

Heavy metals such as cadmium and zinc constitute major pollutants in coastal areas and frequently accumulate in salt marshes. The wetland halophyte plant species Kosteletzkya pentacarpos is a promising species for phytostabilization of contaminated areas. In order to assess the role of the antisenescing phytohormone cytokinin in heavy metal resistance in this species, seedlings were exposed for two weeks to Cd (10 µM), Zn (100 µM) or Cd + Zn (10 µM + 100 µM) in the presence or absence of 50 mM NaCl and half of the plants were sprayed every two days with the cytokinin trans-zeatine riboside (10 µM). Zinc reduced the endogenous cytokinin concentration. Exogenous cytokinin increased plant growth, stomatal conductance, net photosynthesis and total ascorbate and reduced oxidative stress estimated by malondialdehyde in Zn-treated plants maintained in the absence of NaCl. Heavy metal induced an increase in the senescing hormone ethylene which was reduced by cytokinin treatment. Plants exposed to the mixed treatment (Cd + Zn) exhibited a specific hormonal status in relation to accumulation of abscisic acid and depletion of salicylic acid. Non-protein thiols (glutathione and phytochelatins) accumulated in response to Cd and Cd + Zn. It is concluded that toxic doses of Cd and Zn have different impacts on the plant behavior and that the simultaneous presence of the two elements induces a specific physiological constraint at the plant level. Salinity helps the plant to cope with heavy metal toxicities and the plant hormone cytokinin assumes key function in Zn resistance but its efficiency is lower in the presence of NaCl.


Assuntos
Cádmio/toxicidade , Citocininas/metabolismo , Hibiscus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Zinco/toxicidade , Ácido Abscísico/análise , Glutationa/metabolismo , Hibiscus/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Ácido Salicílico/análise , Salinidade , Plântula/fisiologia , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
9.
Chemosphere ; 209: 892-900, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30114738

RESUMO

Salt marshes are major sinks for heavy metals where plants are often exposed to polymetallic contamination and high salinity. Seedlings from the wetland halophyte plant species Kosteletzkya pentacarpos were exposed during three weeks to nutrient solution containing 10 µM CdCl2, 100 µM ZnCl2 or a combination of the two metals (Cd + Zn) in the presence or absence of 50 mM NaCl. Synthesis of the senescing hormone ethylene was quantified together with the concentration of protecting polyamines (spermidine and spermine) and their precursor putrescine and analyzed in relation to senescence markers (soluble protein, malondialdehyde, chlorophyll content and assessment of cell membrane stability). Salinity reduced the deleterious impact of heavy metals on plant growth and decreased accumulation of the pollutants in the plants. Heavy metals increased ethylene synthesis but NaCl decreased it in plants exposed to Cd or to the combined treatment (Cd + Zn) but not in plants exposed to Zn alone. Putrescine increased while spermine and spermidine decreased in Cd-treated plants. Zinc had only a marginal impact on polyamine concentration. The highest putrescine and spermine concentrations were observed in plants exposed to the combined treatment. The inhibitor of ethylene synthesis (AVG; aminovynilglycine) partially restored plant growth, reduced putrescine content and increased spermidine and spermine concentration, leading to an attenuation of senescence, mainly in Cd-treated plants. Combined treatment induced a specific physiological status in K. pentacarpos which could not be fully explained by an additive effect of Cd and Zn. Results are discussed in relation to specificities of heavy metals impacts on plant response.


Assuntos
Cádmio/química , Etilenos/química , Desenvolvimento Vegetal/efeitos dos fármacos , Poliaminas/química , Poliaminas/síntese química , Zinco/química , Salinidade
10.
Environ Sci Pollut Res Int ; 25(18): 17444-17456, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29656355

RESUMO

Data regarding NaCl impact on halophyte plant species exposed to a polymetallic contamination remain scarce. Seedlings of the salt marsh species Kosteletzkya pentacarpos were simultaneously exposed to cadmium (10 µM) and zinc (100 µM) in the absence or presence of 50 mM NaCl. Heavy metal exposure reduced plant growth and increased Cd and Zn concentrations in all organs. Cd and Zn accumulation reduced net photosynthesis in relation to stomatal closure, decreased in chlorophyll concentration and alteration in chlorophyll fluorescence-related parameters. Salinity reduced Cd and Zn bioaccumulation and translocation, with a higher impact on Cd than Zn. It mitigated the deleterious impact of heavy metals on photosynthetic parameters. NaCl reduced the heavy metal-induced oxidative stress assessed by malondialdehyde, carbonyl, and H2O2 concentration. Subcellular distribution revealed that Cd mainly accumulated in the cell walls, but NaCl increased it in the cytosol fraction in the leaf and in the metal-rich granule fraction in the roots. It had no impact on Zn subcellular distribution. The additional NaCl contributed to a higher sequestration of Cd on phytochelatins and stimulated glutathione synthesis. The positive impact of NaCl on K. pentacarpos response to polymetallic pollution made this species a promising candidate for revegetation of heavy metal-contaminated salt areas.


Assuntos
Peróxido de Hidrogênio/química , Malvaceae/química , Metais Pesados/química , Plantas Tolerantes a Sal/metabolismo , Plântula/metabolismo , Zinco/química , Cádmio , Clorofila/metabolismo , Fotossíntese , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Salinidade , Áreas Alagadas
11.
Molecules ; 22(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207478

RESUMO

Total phenolic content (TPC), reducing power (RP), superoxide radical scavenging (RS), and thiobarbituric acid reactive substances (TBARS) production inhibition were measured in raw and denatured aqueous extracts from sprouts and wheatgrass of einkorn and emmer obtained at increasing salinity. Grains were incubated and kept at 0, 25, 50, and 100 mM NaCl until either sprout or wheatgrass stage. Additionally, a recovery treatment was included, in which sprouts obtained at 100 mM NaCl were then transferred at 0 mM NaCl until wheatgrass stage. All parameters (TPC, RP, RS, and TBARS production inhibition) increased with sprouting and were highest in wheatgrass. Salinity increased all parameters, but the effect varied with NaCl concentration, genotype, developmental stage, and plant material processing (raw or denatured). Overall, given the delay and limitation of growth at high NaCl concentration, the best compromise appears to be the application of a moderate salinity (25 to 50 mM NaCl). In denatured extracts, TPC, RP, and RS slightly decreased, and TBARS was not affected, which means that antioxidant activity was mainly related to compounds other than enzymes and peptides, and thus it can be assumed to remain after digestion. Thus, supplementing the human diet with einkorn or emmer sprouts and wheatgrass can actually benefit health.


Assuntos
Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Poaceae/química , Plântula/química , Triticum/química , Antioxidantes/análise , Suplementos Nutricionais/análise , Sequestradores de Radicais Livres/química , Humanos , Fenóis/análise , Extratos Vegetais/análise , Salinidade , Cloreto de Sódio/química , Água
12.
Ecotoxicol Environ Saf ; 139: 344-351, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28187398

RESUMO

Most arsenic in surface soil and water exists primarily in its oxidized form, as arsenate (As(V); AsO43-), which is an analog of phosphate (PO43-). Arsenate can be taken up by phosphate transporters. Atriplex atacamensis Phil. is native to northern Chile (Atacama Desert), and this species can cope with high As concentrations and low P availability in its natural environment. To determine the impact of P on As accumulation and tolerance in A. atacamensis, the plants were cultivated in a hydroponic system under four treatments: no As(V) addition with 323µM phosphate (control); 1000µM As(V) addition with 323µM phosphate; no As(V) and no phosphate; 1000µM As(V) addition and no phosphate. Phosphate starvation decreased shoot fresh weight, while As(V) addition reduced stem and root fresh weights. Arsenate addition decreased the P concentrations in both roots and leaves, but to a lesser extent than for P starvation. Phosphorus starvation increased the As concentrations in roots, but decreased it in shoots, which suggests that P deficiency reduced As translocation from roots to shoots. Arsenate addition increased total glutathione, but P deficiency decreased oxidized and reduced glutathione in As(V)-treated plants. Arsenate also induced an increase in S accumulation and nonprotein thiol and ethylene synthesis, and a decrease in K concentrations, effects that were similar for the P-supplied and P-starved plants. In contrast, in As(V)-treated plants, P starvation dramatically decreased total soluble protein content and increased lipid peroxidation, compared to plants supplied with P. Phosphorus nutrition thus appears to be an important component of A. atacamensis response to As toxicity.


Assuntos
Arseniatos/farmacocinética , Atriplex/efeitos dos fármacos , Atriplex/metabolismo , Fósforo/deficiência , Arseniatos/metabolismo , Arseniatos/farmacologia , Transporte Biológico/efeitos dos fármacos , Etilenos/biossíntese , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fósforo/metabolismo , Fósforo/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Potássio/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo
13.
J Plant Physiol ; 210: 24-37, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040626

RESUMO

Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2µM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ13C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ13C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ13C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense.


Assuntos
Etilenos/antagonistas & inibidores , Glicina/análogos & derivados , Glicina/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Solanum/fisiologia , Plantas Tolerantes a Sal/fisiologia
14.
Sci Rep ; 6: 32890, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597726

RESUMO

The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Tolerância ao Sal/efeitos da radiação , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/efeitos dos fármacos , Populus/efeitos da radiação , Estresse Fisiológico/efeitos da radiação
15.
Physiol Plant ; 158(2): 152-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27105808

RESUMO

This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Poliaminas/metabolismo , Ácido Salicílico/metabolismo , Cloreto de Sódio/farmacologia , Solanum lycopersicum/fisiologia , Solanum/fisiologia , Etilenos/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Osmose , Salinidade , Plantas Tolerantes a Sal , Solanum/efeitos dos fármacos , Estresse Fisiológico
16.
Ecotoxicol Environ Saf ; 126: 122-128, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745003

RESUMO

Citrate, malate and histidine have been involved in many processes including metal tolerance and accumulation in plants. These molecules have been frequently reported to be the potential nickel chelators, which most likely facilitate metal transport through xylem. In this context, we assess here, the relationship between organics acids and histidine content and nickel accumulation in Mesembryanthemum crystallinum and Brassica juncea grown in hydroponic media added with 25, 50 and 100 µM NiCl2. Results showed that M. crystallinum is relatively more tolerant to Ni toxicity than B. juncea. For both species, xylem transport rate of Ni increased with increasing Ni supply. A positive correlation was established between nickel and citrate concentrations in the xylem sap. In the shoot of B. juncea, citric and malic acids concentrations were significantly higher than in the shoot of M. crystallinum. Also, the shoots and roots of B. juncea accumulated much more histidine. In contrast, a higher root citrate concentration was observed in M. crystallinum. These findings suggest a specific involvement of malic and citric acid in Ni translocation and accumulation in M. crystallinum and B. juncea. The high citrate and histidine accumulation especially at 100µM NiCl2, in the roots of M. crystallinum might be among the important factors associated with the tolerance of this halophyte to toxic Ni levels.


Assuntos
Ácido Cítrico/metabolismo , Histidina/metabolismo , Malatos/metabolismo , Mesembryanthemum/metabolismo , Mostardeira/metabolismo , Níquel/farmacocinética , Transporte Biológico/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Tolerantes a Sal , Xilema
17.
Plant Physiol ; 164(4): 1967-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24567191

RESUMO

The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed.


Assuntos
Arabidopsis/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Tolerância ao Sal , Solanum lycopersicum/fisiologia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidroponia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Pressão Osmótica , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Poliaminas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Salinidade , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Transdução de Sinais , Cloreto de Sódio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
Plant Cell Environ ; 37(6): 1299-320, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24237383

RESUMO

Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 µm Cd or 50 µm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment.


Assuntos
Cádmio/metabolismo , Zinco/metabolismo , Zygophyllum/metabolismo , Transporte Biológico , Cádmio/análise , Clorofila/metabolismo , Terapia a Laser , Espectrometria de Massas , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma , Espectrometria por Raios X , Zinco/análise
19.
J Plant Physiol ; 170(18): 1585-94, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23942356

RESUMO

In the present study, the expression of fourteen genes involved in various signal transduction pathways was examined in young soybean (Glycine max) seedlings exposed to cadmium at two concentrations (10 mg L(-1) and 25 mg L(-1)) for short time periods (3, 6 and 24 h). The results show that cadmium causes induction of genes encoding proteins involved in ethylene and polyamines metabolism, nitric oxide generation, MAPK cascades and regulation of other genes' expression. The bioinformatic analysis of promoter sequences of Cd-inducible genes revealed that their promoters possess several regulative motifs associated with the plant response to stress factors and abscisic acid and ethylene signaling. The involvement of ethylene in the response of soybean seedlings to cadmium stress was further confirmed by the real-time analysis of ethylene production during 24 h of CdCl2 treatment. The role of the described signaling elements in transduction of the cadmium signal in young soybean seedlings is discussed.


Assuntos
Cádmio/toxicidade , Glycine max/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Sequência de Bases , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Motivos de Nucleotídeos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poliaminas/metabolismo , Regiões Promotoras Genéticas/genética , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Transdução de Sinais/genética , Glycine max/efeitos dos fármacos , Glycine max/enzimologia , Glycine max/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Physiol Plant ; 147(3): 352-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22697433

RESUMO

Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (F(v) /F(m) ), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O(2) (•-) and H(2) O(2) concentration and lead to a decrease in endogenous glutathione (GSH) and α-tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd-induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of F(v) /F(m) , Y(II) and ETR. Salt reduced oxidative stress in Cd-treated plants through an increase in GSH, α-tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl-treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.


Assuntos
Antioxidantes/metabolismo , Cádmio/farmacologia , Malvaceae/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos Cíclicos/metabolismo , Clorofila/metabolismo , Transporte de Elétrons , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malvaceae/efeitos dos fármacos , Malvaceae/enzimologia , Malvaceae/crescimento & desenvolvimento , Estresse Oxidativo , Fotossíntese , Complexo de Proteína do Fotossistema II , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/enzimologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Salinidade , Plantas Tolerantes a Sal , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Áreas Alagadas , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA