Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Viruses ; 14(5)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35632665

RESUMO

Immunocompromise is a common condition in cats, especially due to widespread infections with immunosuppressive viruses, such as feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV), but also due to chronic non-infectious diseases, such as tumours, diabetes mellitus, and chronic kidney disease, as well as treatment with immunosuppressive drugs, such as glucocorticoids, cyclosporins, or tumour chemotherapy. In this review, the European Advisory Board on Cat Diseases (ABCD), a scientifically independent board of experts in feline medicine from eleven European countries, discusses the current knowledge and rationale for vaccination of immunocompromised cats. So far, there are few data available on vaccination of immunocompromised cats, and sometimes studies produce controversial results. Thus, this guideline summarizes the available scientific studies and fills in the gaps with expert opinion, where scientific studies are missing. Ultimately, this review aims to help veterinarians with their decision-making in how best to vaccinate immunocompromised cats.


Assuntos
Vírus da Imunodeficiência Felina , Vírus da Leucemia Felina , Animais , Gatos , Europa (Continente) , Vacinação/veterinária
2.
Viruses ; 11(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671816

RESUMO

Feline leukaemia virus (FeLV) is a retrovirus associated with fatal disease in progressively infected cats. While testing/removal and vaccination led to a decreased prevalence of FeLV, recently, this decrease has reportedly stagnated in some countries. This study aimed to prospectively determine the prevalence of FeLV viraemia in cats taken to veterinary facilities in 32 European countries. FeLV viral RNA was semiquantitatively detected in saliva, using RT-qPCR as a measure of viraemia. Risk and protective factors were assessed using an online questionnaire to report geographic, demographic, husbandry, FeLV vaccination, and clinical data. The overall prevalence of FeLV viraemia in cats visiting a veterinary facility, of which 10.4% were shelter and rescue cats, was 2.3% (141/6005; 95% CI: 2.0%-2.8%) with the highest prevalences in Portugal, Hungary, and Italy/Malta (5.7%-8.8%). Using multivariate analysis, seven risk factors (Southern Europe, male intact, 1-6 years of age, indoor and outdoor or outdoor-only living, living in a group of ≥5 cats, illness), and three protective factors (Northern Europe, Western Europe, pedigree cats) were identified. Using classification and regression tree (CART) analysis, the origin of cats in Europe, pedigree, and access to outdoors were important predictors of FeLV status. FeLV-infected sick cats shed more viral RNA than FeLV-infected healthy cats, and they suffered more frequently from anaemia, anorexia, and gingivitis/stomatitis than uninfected sick cats. Most cats had never been FeLV-vaccinated; vaccination rates were indirectly associated with the gross domestic product (GDP) per capita. In conclusion, we identified countries where FeLV was undetectable, demonstrating that the infection can be eradicated and highlighting those regions where awareness and prevention should be increased.


Assuntos
Doenças do Gato/epidemiologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Doenças do Gato/diagnóstico , Gatos , Europa (Continente)/epidemiologia , Feminino , Vírus da Leucemia Felina/isolamento & purificação , Masculino , Prevalência , Estudos Prospectivos , Fatores de Proteção , Infecções por Retroviridae/diagnóstico , Infecções por Retroviridae/epidemiologia , Fatores de Risco , Saliva/virologia , Infecções Tumorais por Vírus/diagnóstico , Infecções Tumorais por Vírus/epidemiologia , Viremia/diagnóstico , Viremia/epidemiologia , Viremia/veterinária
3.
J Feline Med Surg ; 19(5): 542-548, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28438088

RESUMO

OVERVIEW: Anaplasma species, Ehrlichia species and Rickettsia species are vector-borne pathogens infecting a wide variety of mammals, but causing disease in very few of them. Infection in cats: Anaplasma phagocytophilum is the most important feline pathogen among these rickettsial organisms, and coinfections are possible. Little information is available on the pathogenesis of these agents in cats. Clinical signs are usually reported soon after tick infestation. They are mostly non-specific, consisting of fever, anorexia and lethargy. Joint pain may occur. Infection in humans: Some rickettsial species ( A phagocytophilum, Ehrlichia chaffeensis, Ehrlichia ewingii, Rickettsia conorii, Rickettsia rickettsii, Rickettsia felis, Rickettsia typhi and Candidatus Neoehrlichia mikurensis) are of zoonotic concern. Direct contact with cat saliva should be avoided because of potential contamination by R felis. Infected cats are 'sentinels' of the presence of rickettsial pathogens in ticks and fleas in a given geographical area, and they signal a risk for people exposed to vectors.


Assuntos
Anaplasmose , Doenças do Gato , Ehrlichiose/veterinária , Infecções por Rickettsia/veterinária , Anaplasma/fisiologia , Anaplasmose/diagnóstico , Anaplasmose/tratamento farmacológico , Anaplasmose/microbiologia , Anaplasmose/prevenção & controle , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Doenças do Gato/microbiologia , Doenças do Gato/prevenção & controle , Gatos , Ehrlichia/fisiologia , Ehrlichiose/diagnóstico , Ehrlichiose/microbiologia , Ehrlichiose/terapia , Humanos , Rickettsia/fisiologia , Infecções por Rickettsia/diagnóstico , Infecções por Rickettsia/microbiologia , Infecções por Rickettsia/terapia
4.
J Feline Med Surg ; 17(7): 570-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101308

RESUMO

OVERVIEW: The ABCD has published 34 guidelines in two Special Issues of the Journal of Feline Medicine and Surgery (JFMS): the first in July 2009 (Volume 11, Issue 7, pages 527-620) and the second in July 2013 (Volume 15, Issue 7, pages 528-652). The present article contains updates and new information on 18 of these (17 disease guidelines and one special article 'Prevention of infectious diseases in cat shelters'). For detailed information, readers are referred to the guidelines published in the above-mentioned JFMS Special Issues.


Assuntos
Infecções Bacterianas/veterinária , Doenças do Gato/prevenção & controle , Viroses/veterinária , Animais , Antibacterianos/uso terapêutico , Antivirais/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/imunologia , Doenças do Gato/tratamento farmacológico , Gatos , Guias de Prática Clínica como Assunto , Medicina Veterinária/normas , Vacinas Virais/imunologia , Viroses/tratamento farmacológico , Viroses/prevenção & controle
5.
J Feline Med Surg ; 17(7): 583-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101309

RESUMO

OVERVIEW: In 2013, the ABCD published 'Matrix vaccination guidelines: ABCD recommendations for indoor/outdoor cats, rescue shelter cats and breeding catteries' in a Special Issue of the Journal of Feline Medicine and Surgery (Volume 15, Issue 7, pages 540-544). The ABCD's vaccination recommendations were presented in tabulated form, taking into account that there is no universal vaccination protocol for all cats. To support the veterinarian's decision making, recommendations for four lifestyles were made: for cats with outdoors access, cats kept solely indoors, rescue shelter cats and cats in breeding catteries. This update article follows the same approach, offering current and, where relevant, expanded recommendations.


Assuntos
Infecções Bacterianas/veterinária , Vacinas Bacterianas/imunologia , Doenças do Gato/prevenção & controle , Vacinas Virais/imunologia , Viroses/veterinária , Bem-Estar do Animal/normas , Animais , Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/administração & dosagem , Doenças do Gato/microbiologia , Doenças do Gato/virologia , Gatos , Medicina Baseada em Evidências , Abrigo para Animais , Guias de Prática Clínica como Assunto , Medicina Veterinária/normas , Vacinas Virais/administração & dosagem , Viroses/prevenção & controle
6.
J Feline Med Surg ; 17(7): 588-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101310

RESUMO

OVERVIEW: The availability of blood components has increased the number of indications for transfusing cats, and fresh whole blood is readily accessible to clinicians because it can be taken from in-house donor cats or 'volunteer' feline blood donors. A certain amount of risk remains to the recipient cat, as immediate or delayed adverse reactions can occur during or after transfusion, related to immunemediated mechanisms. This article, however, focuses on adverse events caused by infectious agents, which may originate either from contamination of blood following incorrect collection, storage or transfusion, or from transfusion of contaminated blood obtained from an infected donor. PREVENTION OF BLOOD CONTAMINATION: In cats, blood cannot be collected through a closed system and, therefore, collection of donor blood requires a multi-step manipulation of syringes and other devices. It is crucial that each step of the procedure is performed under the strictest aseptic conditions and that bacterial contamination of blood bags is prevented, as bacterial endotoxins can cause an immediate febrile reaction or even fatal shock in the recipient cat. PREVENTION OF DISEASE TRANSMISSION: With a view to preventing transmission of blood-borne infectious diseases, the American College of Veterinary Internal Medicine has adopted basic criteria for selecting pathogens to be tested for in donor pets. The worldwide core screening panel for donor cats includes feline leukaemia virus, feline immunodeficiency virus, Bartonella species and feline haemoplasma. The list should be adapted to the local epidemiological situation concerning other vector-borne feline infections. The most practical, rapid and inexpensive measure to reduce transfusion risk is to check the risk profile of donor cats on the basis of a written questionnaire. Blood transfusion can never, however, be considered entirely safe.


Assuntos
Transfusão de Sangue/veterinária , Doenças do Gato/prevenção & controle , Doenças Transmissíveis/veterinária , Doença Iatrogênica/veterinária , Bem-Estar do Animal/normas , Animais , Gatos , Doença Iatrogênica/prevenção & controle , Vírus da Imunodeficiência Felina , Guias de Prática Clínica como Assunto , Reação Transfusional , Medicina Veterinária/normas
7.
J Feline Med Surg ; 17(7): 594-605, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101311

RESUMO

OVERVIEW: Regardless of whether a pathogen is viral, bacterial, parasitic, fungal or an emerging unknown, the mainstay of infectious disease control is hygiene, and the cornerstone of good hygiene is effective disinfection. CHALLENGES AND CURRENT CHOICES: Certain pathogens present a challenge to kill effectively: parvovirus, protozoal oocysts, mycobacteria, bacterial spores and prions resist most disinfectants but can be eliminated through heat, especially steam, which will kill protozoal oocysts. Heat is the safest and most effective disinfectant, but cannot be universally applied. Temperatures in washing machines and dishwashers should be at least 60 °C to eliminate pathogenic spores and resistant viruses. Enveloped viruses are susceptible to most disinfectants; of the non-enveloped viruses, parvovirus is recognised as being the most difficult to eradicate. Sodium hypochlorite is recommended for many applications: cleaning of floors, laundry, food preparation surfaces and utensils. Skin scrubs and rubs containing alcohols are more effective than those containing chlorhexidine, and less subject to contamination. DISINFECTANTS TO AVOID: Deficiency of the enzyme UDP-glucuronosyl transferase renders the cat susceptible to the toxic effects of phenol-based disinfectants (including many essential oils), so these should be avoided in feline environments. Quaternary ammonium compounds (eg, benzalkonium chloride) are also probably best avoided. THE FUTURE: Veterinary disinfection approaches in the future may include use of ultraviolet radiation and, increasingly, silver.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/prevenção & controle , Controle de Doenças Transmissíveis/normas , Desinfetantes/administração & dosagem , Desinfecção/normas , Abrigo para Animais/normas , Animais , Gatos , Desinfetantes/efeitos adversos , Animais de Estimação , Guias de Prática Clínica como Assunto , Medicina Veterinária/normas
8.
J Feline Med Surg ; 17(7): 614-6, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101313

RESUMO

OVERVIEW: Borna disease virus (BDV) has a broad host range, affecting primarily horses and sheep, but also cattle, ostriches, cats and dogs. In cats, BDV may cause a non-suppurative meningoencephalomyelitis ('staggering disease'). INFECTION: The mode of transmission is not completely elucidated. Direct and indirect virus transmission is postulated, but BDV is not readily transmitted between cats. Vectors such as ticks may play a role and shrews have been identified as a potential reservoir host. Access to forested areas has been reported to be an important risk factor for staggering disease. DISEASE SIGNS: It is postulated that BDV may infect nerve endings in the oropharynx and spread via olfactory nerve cells to the central nervous system. A strong T-cell response may contribute to the development of clinical disease. Affected cats develop gait disturbances, ataxia, pain in the lower back and behavioural changes. DIAGNOSIS: For diagnostic purposes, detection of viral RNA by reverse transcription PCR in samples collected from cats with clinical signs of Borna disease can be considered diagnostic. Serology is of little value; cats without signs of Borna disease may be seropositive and yet not every cat with BDV infection has detectable levels of antibodies. HUMAN INFECTION: A hypothesis that BDV infection may be involved in the development of selected neurological disorders in man could not be confirmed. A research group within the German Robert Koch Institute studied the potential health threat of BDV to humans and concluded that BDV was not involved in the aetiology of human psychiatric diseases.


Assuntos
Bem-Estar do Animal/normas , Doença de Borna/prevenção & controle , Vírus da Doença de Borna/isolamento & purificação , Doenças do Gato/prevenção & controle , Abrigo para Animais/normas , Zoonoses/virologia , Animais , Anticorpos Antivirais/sangue , Doença de Borna/diagnóstico , Doenças do Gato/diagnóstico , Doenças do Gato/virologia , Gatos , Humanos , Masculino , Guias de Prática Clínica como Assunto , Medicina Veterinária/normas
9.
J Feline Med Surg ; 17(7): 617-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101314

RESUMO

OVERVIEW: West Nile virus (WNV) is a zoonotic mosquito-borne virus with a broad host range that infects mainly birds and mosquitos, but also mammals (including humans), reptiles, amphibians and ticks. It is maintained in a bird-mosquito-bird transmission cycle. The most important vectors are bird-feeding mosquitos of the Culex genus; maintenance and amplification mainly involve passerine birds. WNV can cause disease in humans, horses and several species of birds following infection of the central nervous system. INFECTION IN CATS: Cats can also be infected through mosquito bites, and by eating infected small mammals and probably also birds. Although seroprevalence in cats can be high in endemic areas, clinical disease and mortality are rarely reported. If a cat is suspected of clinical signs due to an acute WNV infection, symptomatic treatment is indicated.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/prevenção & controle , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves , Doenças do Gato/diagnóstico , Doenças do Gato/virologia , Gatos , Culex , Reservatórios de Doenças/veterinária , Humanos , Insetos Vetores , Guias de Prática Clínica como Assunto , Medicina Veterinária/normas , Febre do Nilo Ocidental/transmissão
10.
J Feline Med Surg ; 17(7): 620-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101315

RESUMO

OVERVIEW: Streptococcus canis is most prevalent in cats, but recently S equi subsp zooepidemicus has been recognised as an emerging feline pathogen. S CANIS INFECTION: S canis is considered part of the commensal mucosal microflora of the oral cavity, upper respiratory tract, genital organs and perianal region in cats. The prevalence of infection is higher in cats housed in groups; and, for example, there may be a high rate of vaginal carriage in young queens in breeding catteries. A wide spectrum of clinical disease is seen, encompassing neonatal septicaemia, upper respiratory tract disease, abscesses, pneumonia, osteomyelitis, polyarthritis, urogenital infections, septicaemia, sinusitis and meningitis. S EQUI SUBSP ZOOEPIDEMICUS INFECTION: S equi subsp zooepidemicus is found in a wide range of species including cats. It was traditionally assumed that this bacterium played no role in disease of cats, but it is now considered a cause of respiratory disease with bronchopneumonia and pneumonia, as well as meningoencephalitis, often with a fatal course. Close confinement of cats, such as in shelters, appears to be a major risk factor. As horses are common carriers of this bacterium, contact with horses is a potential source of infection. Additionally, the possibility of indirect transmission needs to be considered. DIAGNOSIS: Streptococci can be detected by conventional culture techniques from swabs, bronchoalveolar lavage fluid or organ samples. Also real-time PCR can be used, and is more sensitive than culture. TREATMENT: In suspected cases, treatment with broad-spectrum antibiotics should be initiated as soon as possible and, if appropriate, adapted to the results of culture and sensitivity tests.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/microbiologia , Doenças do Gato/prevenção & controle , Doenças Respiratórias/veterinária , Infecções Estreptocócicas/veterinária , Streptococcus equi/patogenicidade , Animais , Doenças do Gato/diagnóstico , Gatos , Surtos de Doenças/veterinária , Feminino , Cavalos , Guias de Prática Clínica como Assunto , Doenças Respiratórias/microbiologia , Doenças Respiratórias/prevenção & controle , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/prevenção & controle , Streptococcus equi/isolamento & purificação , Medicina Veterinária/normas
11.
J Feline Med Surg ; 17(7): 606-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101312

RESUMO

OVERVIEW: In cats, the most serious of adverse effects following vaccination is the occurrence of invasive sarcomas (mostly fibrosarcomas): so-called 'feline injection-site sarcomas' (FISSs). These develop at sites of previous vaccination or injection. They have characteristics that are distinct from those of fibrosarcomas in other areas and behave more aggressively. The rate of metastasis ranges from 10-28%. PATHOGENESIS: The pathogenesis of these sarcomas is not yet definitively explained. However, chronic inflammatory reactions are considered the trigger for subsequent malignant transformation. Injections of long-acting drugs (such as glucocorticoids, and others) have been associated with sarcoma formation. Adjuvanted vaccines induce intense local inflammation and seem therefore to be particularly linked to the development of FISS. The risk is lower for modified-live and recombinant vaccines, but no vaccine is risk-free. TREATMENT AND PREVENTION: Aggressive, radical excision is required to avoid tumour recurrence. The prognosis improves if additional radiotherapy and/or immunotherapy (such as recombinant feline IL-2) are used. For prevention, administration of any irritating substance should be avoided. Vaccination should be performed as often as necessary, but as infrequently as possible. Non-adjuvanted, modified-live or recombinant vaccines should be selected in preference to adjuvanted vaccines. Injections should be given at sites at which surgery would likely lead to a complete cure; the interscapular region should generally be avoided. Post-vaccination monitoring should be performed.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/etiologia , Doenças do Gato/prevenção & controle , Abrigo para Animais/normas , Sarcoma/veterinária , Vacinação/veterinária , Animais , Gatos , Guias de Prática Clínica como Assunto , Sarcoma/etiologia , Neoplasias de Tecidos Moles/etiologia , Neoplasias de Tecidos Moles/veterinária , Vacinação/efeitos adversos , Medicina Veterinária/normas
12.
J Feline Med Surg ; 17(7): 626-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101316

RESUMO

OVERVIEW: Cardiopulmonary nematodes are emerging parasites of cats in Europe. A number of helminth parasites may be involved. The most prevalent lungworm in domestic cats is Aelurostrongylus abstrusus. Oslerus rostratus and Troglostrongylus species are found mainly in wild cats. The trichurid Capillaria aerophila has a low host specificity and is not uncommon in cats. Additionally the lung flukes Paragonimus species are reported in many species outside of Europe, including cats. CLINICAL SIGNS: Lungworm infections may be asymptomatic, or cause mild to severe respiratory signs, dependent on the worm species and burden; mixed infections are observed. Kittens can be vertically infected and may develop a more severe disease. Affected cats show a productive cough, mucopurulent nasal discharge, tachypnoea, dyspnoea and, in severe cases, respiratory failure and death. MANAGEMENT: Early diagnosis and treatment greatly improves the prognosis. First-stage larvae can be easily detected in fresh faecal samples; the Baermann migration method is the enrichment technique of choice, but takes 24 h. Lungworm larvae can be found in tracheal swabs and bronchoalveolar lavage fluid, but with less sensitivity than in faeces. Molecular methods have been developed that exhibit high specificity and sensitivity, and allow diagnosis in the prepatent phase. Treatment options include fenbendazole paste, milbemycin oxime/praziquantel and various spot-on formulations. Severe cases should receive prompt medical care in an intensive care unit. PREVENTION: Avoiding predation is at present the only preventive measure for pulmonary worms with indirect life cycles. ZOONOTIC RISK: C aerophila has zoonotic potential, causing severe pulmonary disease in humans. Some Paragonimus species are also of zoonotic concern.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/prevenção & controle , Doenças do Gato/parasitologia , Pneumopatias Parasitárias/veterinária , Infecções por Nematoides/veterinária , Infecções por Strongylida/veterinária , Animais , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Gatos , Europa (Continente) , Fezes/parasitologia , Feminino , Larva , Pneumopatias Parasitárias/parasitologia , Masculino , Infecções por Nematoides/prevenção & controle , Guias de Prática Clínica como Assunto , Praziquantel/uso terapêutico , Infecções por Strongylida/prevenção & controle , Medicina Veterinária/normas
13.
J Feline Med Surg ; 17(7): 637-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101317

RESUMO

OVERVIEW: Cytauxzoon species are apicomplexan haemoparasites, which may cause severe disease in domestic cats, as well as lions and tigers. For many years, cytauxzoonosis in domestic cats was only reported in North and South America, but in recent years the infection has also been seen in Europe (Spain, France and Italy). INFECTION: Cytauxzoon felis is the main species; it occurs as numerous different strains or genotypes and is transmitted via ticks. Therefore, the disease shows a seasonal incidence from spring to early autumn and affects primarily cats with outdoor access in areas where tick vectors are prevalent. Domestic cats may experience subclinical infection and may also act as reservoirs. CLINICAL SIGNS: Cytauxzoonosis caused by C felis in the USA is an acute or peracute severe febrile disease with non-specific signs. Haemolytic anaemia occurs frequently; in some cats neurological signs may occur in late stages. The Cytauxzoon species identified in Europe differ from C felis that causes disease in the USA and are probably less virulent. The majority of infected cats have been healthy; in some cases anaemia was found, but disease as it occurs in the USA has not been reported to date. DIAGNOSIS: Diagnosis is usually obtained by Cytauxzoon detection in blood smears and/or fine-needle aspirates from the liver, spleen and lymph nodes. PCR assays are able to detect low levels of parasitaemia and may be used for confirmation. TREATMENT: Currently a combination of the antiprotozoal drugs atovaquone and azithromycin is the treatment of choice. Concurrent supportive and critical care treatment is extremely important to improve the prognosis. Cats that survive the infection may become chronic carriers for life. PREVENTION: Cats with outdoor access in endemic areas should receive effective tick treatment.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/prevenção & controle , Reservatórios de Doenças/veterinária , Infecções Protozoárias em Animais/prevenção & controle , Animais , Animais Domésticos , Antiprotozoários/uso terapêutico , Doenças do Gato/diagnóstico , Doenças do Gato/parasitologia , Gatos , Reservatórios de Doenças/parasitologia , Europa (Continente) , França , Piroplasmida/parasitologia , Reação em Cadeia da Polimerase/veterinária , Guias de Prática Clínica como Assunto , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Estações do Ano , Medicina Veterinária/normas
14.
J Feline Med Surg ; 17(7): 642-4, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26101318

RESUMO

OVERVIEW: Hepatozoonosis of domestic cats has been reported in several countries, mainly as a subclinical infection. DISEASE AGENT: Infection has been described mostly in areas where canine infection is present and, in recent years, Hepatozoon felis has been identified as a distinct species by molecular techniques. The vector for feline hepatozoonosis remains unknown and the pathogenesis has not been elucidated. INFECTION IN CATS: Feline hepatozoonosis is mainly a subclinical infection and few cases have been reported with clinical signs. The diagnosis of hepatozoonosis in cats can be made by observation of parasite gamonts in blood smears, parasite meronts in muscles by histopathology, and detection of parasite DNA in blood and tissue by PCR. DISEASE MANAGEMENT: The treatment of choice is not known, but single cases have been treated with doxycycline or oxytetracycline and primaquine. Although the mode of transmission and the type of vector is not known, preventive treatment against blood-sucking vectors (fleas and ticks) is advised.


Assuntos
Bem-Estar do Animal/normas , Doenças do Gato/diagnóstico , Doenças do Gato/prevenção & controle , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/prevenção & controle , Animais , Doenças do Gato/tratamento farmacológico , Gatos , Infestações por Pulgas/diagnóstico , Infestações por Pulgas/prevenção & controle , Guias de Prática Clínica como Assunto , Infecções Protozoárias em Animais/parasitologia , Medicina Veterinária/normas
15.
Clin Vaccine Immunol ; 22(6): 611-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25809630

RESUMO

The cheetah population in Namibia is the largest free-ranging population in the world and a key population for research regarding the health status of this species. We used serological methods and quantitative real-time PCR to test free-ranging and captive Namibian cheetahs for the presence of feline leukemia virus (FeLV), a gammaretrovirus that can be highly aggressive in populations with low genetic diversity, such as cheetahs. We also assessed the presence of antibodies to other gammaretroviruses and the responses to a FeLV vaccine developed for domestic cats. Up to 19% of the free-ranging cheetahs, 27% of the captive nonvaccinated cheetahs, and 86% of the captive vaccinated cheetahs tested positive for FeLV antibodies. FeLV-antibody-positive free-ranging cheetahs also tested positive for Rauscher murine leukemia virus antibodies. Nevertheless, FeLV was not detectable by quantitative real-time PCR and no reverse transcriptase activity was detectable by product-enhanced reverse transcriptase assay in the plasma of cheetahs or the supernatants from cultures of peripheral blood mononuclear cells. The presence of antibodies to gammaretroviruses in clinically healthy specimens may be caused either by infection with a low-pathogenic retrovirus or by the expression of endogenous retroviral sequences. The strong humoral immune responses to FeLV vaccination demonstrate that cheetahs can respond to the vaccine and that vaccination against FeLV infection may be beneficial should FeLV infection ever become a threat, as was seen in Iberian lynx and Florida panthers.


Assuntos
Acinonyx/virologia , Vírus da Leucemia Felina/isolamento & purificação , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Anticorpos Antivirais/sangue , Sangue/imunologia , Sangue/virologia , Vírus da Leucemia Felina/genética , Vírus da Leucemia Felina/imunologia , Masculino , Namíbia , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Infecções por Retroviridae/virologia , Testes Sorológicos , Infecções Tumorais por Vírus/virologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
16.
Virus Res ; 197: 137-50, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25553598

RESUMO

It is a remarkable feature for a retrovirus that an infection with feline leukemia virus (FeLV) can result in various outcomes. Whereas some cats contain the infection and show a regressive course, others stay viremic and succumb to the infection within a few years. We hypothesized, that differences in the infection outcome might be causally linked to the viral RNA and provirus loads within the host and these loads therefore may give additional insight into the pathogenesis of the virus. Thus, the goals of the present study were to follow-up on experimentally infected cats and investigate tissues from cats with different infection outcomes using sensitive, specific TaqMan real-time PCR and reverse transcriptase (RT)-PCR. Nineteen experimentally FeLV-A/Glasgow-1-infected cats were categorized into having regressive, progressive or reactivated FeLV infection according to follow-up of FeLV p27 antigen detection in the blood. Remarkably, regressively infected cats showed detectable provirus and viral RNA loads in almost all of the 27 tested tissues, even many years after virus exposure. Moreover, some regressively infected cats reactivated the infection, and these cats had intermediate to high viral RNA and provirus tissue loads. The highest loads were found in viremic cats, independent of their health status. Tissues that represented sites of virus replication and shedding revealed the highest viral RNA and provirus loads, while the lowest loads were present in muscle and nerve tissues. A supplementary analysis of 20 experimentally infected cats with progressive infection revealed a median survival time of 3.1 years (range from 0.6 to 6.5 years); ∼70% (n=14) of these cats developed lymphoma, while leukemia and non-regenerative anemia were observed less frequently. Our results demonstrate that the different infection outcomes are associated with differences in viral RNA and provirus tissue loads. Remarkably, no complete clearance of FeLV viral RNA or provirus was detected in cats with regressive infection, even up to 12 years after exposure. In several cases FeLV reactivation could be observed. Thus, retroviruses integrated as provirus into the host's genome, could not be eliminated completely by the host and maintained their full potential for replication and reactivation.


Assuntos
Doenças do Gato/virologia , Vírus da Leucemia Felina/isolamento & purificação , Provírus/isolamento & purificação , RNA Viral/isolamento & purificação , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Carga Viral , Animais , Gatos , Vírus da Leucemia Felina/genética , Estudos Longitudinais , Linfoma/veterinária , Provírus/genética , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Análise de Sobrevida , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
17.
Vet Microbiol ; 175(2-4): 167-78, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25500005

RESUMO

Cats persistently infected with the gammaretrovirus feline leukemia virus (FeLV) are at risk to die within months to years from FeLV-associated disease, such as immunosuppression, anemia or lymphoma/leukemia. The integrase inhibitor raltegravir has been demonstrated to reduce FeLV replication in vitro. The aim of the present study was to investigate raltegravir in vivo for its safety and efficacy to suppress FeLV replication. The safety was tested in three naïve specified pathogen-free (SPF) cats during a 15 weeks treatment period (initially 20mg then 40mg orally b.i.d.). No adverse effects were noted. The efficacy was tested in seven persistently FeLV-infected SPF cats attained from 18 cats experimentally exposed to FeLV-A/Glasgow-1. The seven cats were treated during nine weeks (40mg then 80mg b.i.d.). Raltegravir was well tolerated even at the higher dose. A significant decrease in plasma viral RNA loads (∼5×) was found; however, after treatment termination a rebound effect was observed. Only one cat developed anti-FeLV antibodies and viral RNA loads remained decreased after treatment termination. Of note, one of the untreated FeLV-A infected cats developed fatal FeLV-C associated anemia within 5 weeks of FeLV-A infection. Moreover, progressive FeLV infection was associated with significantly lower enFeLV loads prior to infection supporting that FeLV susceptibility may be related to the genetic background of the cat. Overall, our data demonstrate the ability of raltegravir to reduce viral replication also in vivo. However, no complete control of viremia was achieved. Further investigations are needed to find an optimized treatment against FeLV. (250 words).


Assuntos
Vírus da Leucemia Felina , Leucemia Felina/tratamento farmacológico , Raltegravir Potássico/uso terapêutico , Animais , Fármacos Anti-HIV/uso terapêutico , Gatos , Vírus da Leucemia Felina/genética , Linfoma , RNA Viral/genética , Organismos Livres de Patógenos Específicos , Carga Viral , Viremia , Replicação Viral/efeitos dos fármacos
18.
J Clin Microbiol ; 52(6): 2046-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696026

RESUMO

The aim of this report was to investigate whether the diagnosis of feline leukemia virus (FeLV) infection by serology might be feasible and useful. Among the various viral proteins, the FeLV env-gene product (SU) and the envelope transmembrane protein p15E were considered promising candidates for the serological diagnosis of FeLV infection. Thus, we evaluated p15E and three other FeLV antigens, namely, a recombinant env-gene product, whole FeLV, and a short peptide from the FeLV transmembrane protein, for their potential to detect FeLV infection. To evaluate possible exposure of cats to FeLV, we tested serum and plasma samples from experimentally and naturally infected and vaccinated cats for the presence of antibodies to these antigens by enzyme-linked immunosorbent assays (ELISAs). The serological results were compared with the p27 and proviral real-time PCR results. We found that p15E displayed a diagnostic sensitivity of 95.7% and a specificity of 100% in experimentally infected cats. In naturally infected cats, p15E showed a diagnostic sensitivity of 77.1% and a specificity of 85.6%. Vaccinated cats displayed minimal antibody levels to p15E, suggesting that anti-p15E antibodies indicate infection rather than vaccination. The other antigens turned out to be too unspecific. The lower specificity in cats exposed to FeLV under field conditions may be explained by the fact that some cats become infected and seroconvert in the absence of detectable viral nucleic acids in plasma. We conclude that p15E serology may become a valuable tool for diagnosing FeLV infection; in some cases, it may replace PCR.


Assuntos
Anticorpos Antivirais/sangue , Doenças do Gato/diagnóstico , Vírus da Leucemia Felina/imunologia , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Proteínas do Envelope Viral , Animais , Gatos , Ensaio de Imunoadsorção Enzimática/métodos , Plasma/imunologia , Infecções por Retroviridae/diagnóstico , Sensibilidade e Especificidade , Testes Sorológicos/métodos , Infecções Tumorais por Vírus/diagnóstico , Proteínas do Envelope Viral/imunologia
20.
J Feline Med Surg ; 15(7): 546-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23813812

RESUMO

OVERVIEW: Recommendations are given in relation to infectious diseases in rescue shelters. The ABCD recognises that there is a wide variation in the design and management of shelters, and that these largely reflect local pressures. These guidelines are written with this diverse audience in mind; they point to the ideal, and also provide for some level of compromise where this ideal cannot immediately be attained. In addition consideration should be given to general requirements in order to optimise overall health and wellbeing of cats within the shelter. HOUSING: Compartmentalisation of the shelter into at least three individual sections (quarantine area for incoming cats, isolation facilities for sick or potentially infectious cats, and accommodation for clinically healthy, retrovirus-negative cats) can facilitate containment of a disease outbreak, should it occur. STANDARD OF CARE: Incoming cats should receive a full health check by a veterinary surgeon, should be dewormed and tested for retrovirus infections (feline leukaemia virus [FeLV] and/or feline immunodeficiency virus [FIV]) in regions with high prevalence and in shelters that allow contact between cats. Cats which are not rehomed should receive a regular veterinary check-up at intervals recommended by their veterinarian. VACCINATION: Each cat should be vaccinated as soon as possible against feline panleukopenia virus (FPV), feline herpesvirus (FHV-1) and feline calicivirus (FCV) infections. HYGIENE: Adequate hygiene conditions should ensure that contact between shedders of infectious agents and susceptible animals is reduced as efficiently as possible by movement control, hygiene procedures of care workers, barrier nursing, cleaning and disinfection. STRESS REDUCTION: Stress reduction is important for overall health and for minimising the risk of recrudescence and exacerbation of infectious diseases. In general, a special effort should be made to rehome cats as soon as possible.


Assuntos
Criação de Animais Domésticos/normas , Bem-Estar do Animal , Doenças do Gato/prevenção & controle , Doenças Transmissíveis/veterinária , Abrigo para Animais/normas , Criação de Animais Domésticos/métodos , Bem-Estar do Animal/normas , Animais , Gatos , Feminino , Humanos , Gravidez , Quarentena , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA