Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Addict Biol ; 22(4): 1010-1021, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27001273

RESUMO

Addiction is a chronic brain disorder that progressively invades all aspects of personal life. Accordingly, addiction to opiates severely impairs interpersonal relationships, and the resulting social isolation strongly contributes to the severity and chronicity of the disease. Uncovering new therapeutic strategies that address this aspect of addiction is therefore of great clinical relevance. We recently established a mouse model of heroin addiction in which, following chronic heroin exposure, 'abstinent' mice progressively develop a strong and long-lasting social avoidance phenotype. Here, we explored and compared the efficacy of two pharmacological interventions in this mouse model. Because clinical studies indicate some efficacy of antidepressants on emotional dysfunction associated with addiction, we first used a chronic 4-week treatment with the serotonergic antidepressant fluoxetine, as a reference. In addition, considering prodepressant effects recently associated with kappa opioid receptor signaling, we also investigated the kappa opioid receptor antagonist norbinaltorphimine (norBNI). Finally, we assessed whether fluoxetine and norBNI could reverse abstinence-induced social avoidance after it has established. Altogether, our results show that two interspaced norBNI administrations are sufficient both to prevent and to reverse social impairment in heroin abstinent animals. Therefore, kappa opioid receptor antagonism may represent a useful approach to alleviate social dysfunction in addicted individuals.


Assuntos
Antidepressivos de Segunda Geração/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Asseio Animal/efeitos dos fármacos , Dependência de Heroína/fisiopatologia , Antagonistas de Entorpecentes/uso terapêutico , Receptores Opioides kappa/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Heroína/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naltrexona/análogos & derivados , Naltrexona/uso terapêutico , Comportamento Social , Tempo , Resultado do Tratamento
2.
Psychopharmacology (Berl) ; 232(11): 1957-71, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25482274

RESUMO

RATIONALE: Opiate addiction is a brain disorder emerging through repeated intoxication and withdrawal episodes. Epidemiological studies also indicate that chronic exposure to opiates may lead in susceptible individuals to the emergence of depressive symptoms, strongly contributing to the severity and chronicity of addiction. We recently established a mouse model of heroin abstinence, characterized by the development of depressive-like behaviors following chronic heroin exposure. OBJECTIVES: While genetic factors regulating immediate behavioral responses to opiates have been largely investigated, little is known about their contribution to long-term emotional regulation during abstinence. Here, we compared locomotor stimulation and physical dependence induced by heroin exposure, as well as emotional dysfunction following abstinence, across mice strains with distinct genetic backgrounds. METHODS: Mice from three inbred strains (C57BL/6J, Balb/cByJ, and 129S2/SvPas) were exposed to an escalating chronic heroin regimen (10-50 mg/kg). Independent cohorts were used to assess drug-induced locomotor activity during chronic treatment, naloxone-precipitated withdrawal at the end of chronic treatment, and emotional-like responses after a 4-week abstinence period. RESULTS: Distinct behavioral profiles were observed across strains during heroin treatment, with no physical dependence and low locomotor stimulation in 129S2/SvPas. In addition, different behavioral impairments developed during abstinence across the three strains, with increased despair-like behavior in 129S2/SvPas and Balb/cByJ, and low sociability in 129S2/SvPas and C57BL/6J. CONCLUSIONS: Our results indicate that depressive-like behaviors emerge during heroin abstinence, whatever the severity of immediate behavioral responses to the drug. In addition, inbred mouse strains will allow studying several aspects of mood-related deficits associated with addiction.


Assuntos
Nível de Alerta/efeitos dos fármacos , Nível de Alerta/genética , Emoções/efeitos dos fármacos , Dependência de Heroína/genética , Dependência de Heroína/psicologia , Heroína/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Animais , Heroína/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos , Naloxona/farmacologia , Comportamento Social , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia
3.
Neuroscience ; 218: 185-95, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22613736

RESUMO

Cholecystokinin (CCK) is a neuropeptide widely distributed in the mammalian brain. This peptide regulates many physiological functions and behaviors, such as cardio-respiratory control, thermoregulation, nociception, feeding, memory processes and motivational responses, and plays a prominent role in emotional responses including anxiety and depression. CCK-expressing brain regions involved in these functions remain unclear and their identification represents an important step towards understanding CCK function in the brain. The basolateral amygdala (BLA) is strongly involved in emotional processing and expresses high levels of CCK. In this study we examined the contribution of CCK expressed in this brain region to emotional responses in mice. To knockdown CCK specifically in the BLA, we used stereotaxic delivery of recombinant adeno-associated viral vectors expressing a CCK-targeted shRNA. This procedure efficiently reduced CCK levels locally. shCCK-treated animals showed reduced levels of anxiety in the elevated plus-maze, and lower despair-like behavior in the forced swim test. Our data demonstrate that CCK expressed in the BLA represents a key brain substrate for anxiogenic and depressant effects of the peptide. The study also suggests that elevated amygdalar CCK could contribute to panic and major depressive disorders that have been associated with CCK dysfunction in humans.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/metabolismo , Colecistocinina/metabolismo , Depressão/metabolismo , Animais , Colecistocinina/deficiência , Técnicas de Silenciamento de Genes , Processamento de Imagem Assistida por Computador , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA