Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241273160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39099463

RESUMO

Introduction: The independent diagnostic value of inflammatory markers neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) and the diagnostic efficacy of NLR, derived neutrophil to lymphocyte ratio (dNLR), PLR, and lymphocyte-to-monocyte ratio (LMR) in glioma cases remain unclear. We investigated the correlation of preoperative peripheral blood inflammatory markers with pathological grade, Ki-67 Proliferation Index, and IDH-1 gene phenotype in patients with glioma, focusing on tumor grade and prognosis. Methods: We retrospectively analyzed the clinical, pathological, and laboratory data of 334 patients with glioma with varying grades and 345 with World Health Organization (WHO I) meningioma who underwent initial surgery at the Affiliated Hospital of Jining Medical University from December 2019 to December 2021. The diagnostic value of peripheral blood inflammatory markers for glioma was investigated. Results: The proportion of men smoking and drinking was significantly higher in the glioma group than in the meningioma group (P < .05); in contrast, the age and body mass index (Kg/m2) were significantly lower in the glioma group (P = .01). Significant differences were noted in the pathological grade (WHO II, III, and IV), Ki-67 Proliferation Index, and peripheral blood inflammatory markers such as lymphocyte median, NLR, dNLR, and PLR between the groups (P < .05). No significant correlation existed between peripheral blood inflammatory factors and IDH-1 gene mutation status or tumor location in patients with glioma (P > .05). LMR, NLR, dNLR, and PLR, varied significantly among different glioma types (P < .05). White blood cell (WBC) count, neutrophil, NLR, and dNLR correlated positively with glioma risk. Further, WBC, neutrophil, NLR, dNLR, and LMR had a high diagnostic efficiency. Conclusion: Peripheral blood inflammatory markers, serving as noninvasive biomarkers, offer high sensitivity and specificity for diagnosing glioma, differentiating it from meningioma, diagnosing GBM, and distinguishing GBM from low-grade glioma. These markers may be implemented as routine screening tools.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Glioma , Gradação de Tumores , Neutrófilos , Humanos , Glioma/patologia , Glioma/sangue , Glioma/cirurgia , Glioma/diagnóstico , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Neutrófilos/patologia , Adulto , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico , Idoso , Linfócitos/patologia , Período Pré-Operatório , Inflamação/patologia , Inflamação/sangue , Plaquetas/patologia , Curva ROC
2.
Mol Immunol ; 166: 101-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278031

RESUMO

Transforming growth factor-ß (TGF-ß) is a pleiotropic cytokine essential for multiple biological processes, including the regulation of inflammatory and immune responses. One of the important functions of TGF-ß is the suppression of the proinflammatory cytokine interleukin-12 (IL-12), which is crucial for mounting an anti-tumorigenic response. Although the regulation of the IL-12p40 subunit (encoded by the IL-12B gene) of IL-12 has been extensively investigated, the knowledge of IL-12p35 (encoded by IL-12A gene) subunit regulation is relatively limited. This study investigates the molecular regulation of IL-12A by TGF-ß-activated signaling pathways in THP-1 monocytes. Our study identifies a complex regulation of IL-12A gene expression by TGF-ß, which involves multiple cellular signaling pathways, such as Smad2/3, NF-κB, p38 and JNK1/2. Pharmacological inhibition of NF-κB signaling decreased IL-12A expression, while blocking the Smad2/3 signaling pathway by overexpression of Smad7 and inhibiting JNK1/2 signaling with a pharmacological inhibitor, SP600125, increased its expression. The elucidated signaling pathways that regulate IL-12A gene expression potentially provide new therapeutic targets to increase IL-12 levels in the tumor microenvironment.


Assuntos
Subunidade p35 da Interleucina-12 , Fator de Crescimento Transformador beta , Citocinas , Expressão Gênica , Interleucina-12 , Subunidade p35 da Interleucina-12/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Humanos
3.
Brain Sci ; 14(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38248304

RESUMO

Glioblastoma is highly proliferative and invasive. However, the regulatory cytokine networks that promote glioblastoma cell proliferation and invasion into other areas of the brain are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma proliferation, epithelial to mesenchymal transition, and invasion. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients using TCGA datasets. Proteomic analysis of glioblastoma cell lines overexpressing IL-11Rα displayed a proteome that favoured enhanced proliferation and invasion. These cells also displayed greater proliferation and migration, while the knockdown of IL-11Rα reversed these tumourigenic characteristics. In addition, these IL-11Rα overexpressing cells displayed enhanced invasion in transwell invasion assays and in 3D spheroid invasion assays, while knockdown of IL-11Rα resulted in reduced invasion. Furthermore, IL-11Rα-overexpressing cells displayed a more mesenchymal-like phenotype compared to parental cells and expressed greater levels of the mesenchymal marker Vimentin. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell proliferation, EMT, and invasion.

4.
Cells ; 13(2)2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275817

RESUMO

BACKGROUND: Glioblastoma is characterised by extensive infiltration into the brain parenchyma, leading to inevitable tumor recurrence and therapeutic failure. Future treatments will need to target the specific biology of tumour recurrence, but our current understanding of the underlying mechanisms is limited. Significantly, there is a lack of available methods and models that are tailored to the examination of tumour recurrence. METHODS: NOD-SCID mice were orthotopically implanted with luciferase-labelled donor U87MG or MU20 glioblastoma cells. Four days later, an unlabelled recipient tumor was implanted on the contralateral side. The mice were euthanised at a humane end-point and tissue and blood samples were collected for ex vivo analyses. RESULTS: The ex vivo analyses of the firefly-labelled MU20 tumours displayed extensive invasion at the primary tumour margins, whereas the firefly-labelled U87MG tumours exhibited expansive phenotypes with no evident invasions at the tumour margins. Luciferase signals were detected in the contralateral unlabelled recipient tumours for both the U87MG and MU20 tumours compared to the non-implanted control brain. Remarkably, tumour cells were uniformly detected in all tissue samples of the supratentorial brain region compared to the control tissue, with single tumour cells detected in some tissue samples. Circulating tumour cells were also detected in the blood samples of most of the xenografted mice. Moreover, tumour cells were detected in the lungs of all of the mice, a probable event related to haematogenous dissemination. Similar results were obtained when the U87MG cells were alternatively labelled with gaussian luciferase. CONCLUSIONS: These findings describe a systemic disease model for glioblastoma which can be used to investigate recurrence biology and therapeutic efficacy towards recurrence.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/patologia , Recidiva Local de Neoplasia , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Animais de Doenças , Luciferases
5.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834778

RESUMO

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Assuntos
Glioblastoma , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glucose/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
6.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269915

RESUMO

Glioblastoma is the most aggressive brain tumour with short survival, partly due to resistance to conventional therapy. Glioma stem cells (GSC) are likely to be involved in treatment resistance, by releasing extracellular vesicles (EVs) containing specific molecular cargoes. Here, we studied the EVs secreted by glioma stem cells (GSC-EVs) and their effects on radiation resistance and glioma progression. EVs were isolated from 3 GSCs by serial centrifugation. NanoSight measurement, cryo-electron microscopy and live imaging were used to study the EVs size, morphology and uptake, respectively. The non-GSC glioma cell lines LN229 and U118 were utilised as a recipient cell model. Wound healing assays were performed to detect cell migration. Colony formation, cell viability and invadopodium assays were conducted to detect cell survival of irradiated recipient cells and cell invasion post GSC-EV treatment. NanoString miRNA global profiling was used to select for the GSC-EVs' specific miRNAs. All three GSC cell lines secreted different amounts of EVs, and all expressed consistent levels of CD9 but different level of Alix, TSG101 and CD81. EVs were taken up by both LN229 and U118 recipient cells. In the presence of GSC-EVs, these recipient cells survived radiation exposure and initiated colony formation. After GSC-EVs exposure, LN229 and U118 cells exhibited an invasive phenotype, as indicated by an increase in cell migration. We also identified 25 highly expressed miRNAs in the GSC-EVs examined, and 8 of these miRNAs can target PTEN. It is likely that GSC-EVs and their specific miRNAs induced the phenotypic changes in the recipient cells due to the activation of the PTEN/Akt pathway. This study demonstrated that GSC-EVs have the potential to induce radiation resistance and modulate the tumour microenvironment to promote glioma progression. Future therapeutic studies should be designed to interfere with these GSC-EVs and their specific miRNAs.


Assuntos
Vesículas Extracelulares , Glioma , MicroRNAs , Microscopia Crioeletrônica , Vesículas Extracelulares/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
7.
Int J Antimicrob Agents ; 58(6): 106460, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34695564

RESUMO

L-sulforaphane (LSF) is an isothiocyanate derived from cruciferous vegetables that has long been known for its anticarcinogenic, antioxidant and anti-inflammatory effects. LSF also possesses antimicrobial properties, although the evidence for this is limited. Respiratory pathogens, such as Streptococcus pneumoniae, Haemophilus influenzae, Streptococcus pyogenes and respiratory syncytial virus (RSV), are leading global causes of illness and death among children aged under five years, particularly in resource-poor countries where access to vaccines are limited or, in the case of S. pyogenes and RSV, vaccines have not been licensed for use in humans. Therefore, alternative strategies to prevent and/or treat these common infectious diseases are urgently needed. This study was conducted to investigate the antimicrobial effects of LSF against common respiratory pathogens, S. pneumoniae (serotypes 1 and 6B), H. influenzae type B (HiB), non-typeable H. influenzae (NTHi), S. pyogenes and RSV in relevant human cell-based models. LSF significantly inhibited the growth of H. influenzae, but not S. pneumoniae or S. pyogenes. LSF did not improve opsonophagocytic capacity or killing by human phagocytic cell lines (HL-60s and THP-1 macrophages) for S. pneumoniae yet showed some improved killing for H. influenzae species in THP-1 macrophages. However, LSF significantly reduced RSV infection in human lung epithelial cells, associated with increased expression of cyclin D1 (CCND1) gene as well as the antioxidant genes, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HMOX-1). Overall, LSF represents an exciting avenue for further antimicrobial research, particularly as a novel therapy against H. influenzae species and RSV.


Assuntos
Antibacterianos/farmacologia , Infecções por Haemophilus/tratamento farmacológico , Isotiocianatos/farmacologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Sulfóxidos/farmacologia , Linhagem Celular , Ciclina D1/metabolismo , Células HL-60 , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/crescimento & desenvolvimento , Heme Oxigenase-1/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Testes de Sensibilidade Microbiana , Fator 2 Relacionado a NF-E2/metabolismo , Opsonização/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Células THP-1 , Verduras/química
8.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281166

RESUMO

Cetuximab is a common treatment option for patients with wild-type K-Ras colorectal carcinoma. However, patients often display intrinsic resistance or acquire resistance to cetuximab following treatment. Here we generate two human CRC cells with acquired resistance to cetuximab that are derived from cetuximab-sensitive parental cell lines. These cetuximab-resistant cells display greater in vitro proliferation, colony formation and migration, and in vivo tumour growth compared with their parental counterparts. To evaluate potential alternative therapeutics to cetuximab-acquired-resistant cells, we tested the efficacy of 38 current FDA-approved agents against our cetuximab-acquired-resistant clones. We identified carfilzomib, a selective proteosome inhibitor to be most effective against our cell lines. Carfilzomib displayed potent antiproliferative effects, induced the unfolded protein response as determined by enhanced CHOP expression and ATF6 activity, and enhanced apoptosis as determined by enhanced caspase-3/7 activity. Overall, our results indicate a potentially novel indication for carfilzomib: that of a potential alternative agent to treat cetuximab-resistant colorectal cancer.


Assuntos
Neoplasias Colorretais/metabolismo , Oligopeptídeos/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cetuximab/farmacologia , Neoplasias Colorretais/fisiopatologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Oligopeptídeos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801941

RESUMO

Reticulocalbin 1 (RCN1) is an endoplasmic reticulum (ER)-residing protein, involved in promoting cell survival during pathophysiological conditions that lead to ER stress. However, the key upstream receptor tyrosine kinase that regulates RCN1 expression and its potential role in cell survival in the glioblastoma setting have not been determined. Here, we demonstrate that RCN1 expression significantly correlates with poor glioblastoma patient survival. We also demonstrate that glioblastoma cells with expression of EGFRvIII receptor also have high RCN1 expression. Over-expression of wildtype EGFR also correlated with high RCN1 expression, suggesting that EGFR and EGFRvIII regulate RCN1 expression. Importantly, cells that expressed EGFRvIII and subsequently showed high RCN1 expression displayed greater cell viability under ER stress compared to EGFRvIII negative glioblastoma cells. Consistently, we also demonstrated that RCN1 knockdown reduced cell viability and exogenous introduction of RCN1 enhanced cell viability following induction of ER stress. Mechanistically, we demonstrate that the EGFRvIII-RCN1-driven increase in cell survival is due to the inactivation of the ER stress markers ATF4 and ATF6, maintained expression of the anti-apoptotic protein Bcl-2 and reduced activity of caspase 3/7. Our current findings identify that EGFRvIII regulates RCN1 expression and that this novel association promotes cell survival in glioblastoma cells during ER stress.

10.
Sci Rep ; 10(1): 17768, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082482

RESUMO

Despite aggressive treatment with temozolomide and radiotherapy and extensive research into alternative therapies there has been little improvement in Glioblastoma patient survival. Median survival time remains between 12 and 15 months mainly due to treatment resistance and tumor recurrence. In this study, we aimed to explore the underlying mechanisms behind treatment resistance and the lack of success with anti-EGFR therapy in the clinic. After generating a number of treatment resistant Glioblastoma cell lines we observed that resistant cell lines lacked EGFR activation and expression. Furthermore, cell viability assays showed resistant cells were significantly less sensitive to the anti-EGFR agents when compared to parental cell lines. To further characterise the resistance mechanism in our cells microRNA prediction software identified miR-221 as a negative regulator of EGFR expression. miR-221 was up-regulated in our resistant cell lines, and this up-regulation led to a significant reduction in EGFR expression in both our cultured cell lines and a large cohort of glioblastoma patient tumor tissue.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Quimiorradioterapia/métodos , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Recidiva Local de Neoplasia , Transdução de Sinais
11.
Inorg Chem ; 59(8): 5662-5673, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32255617

RESUMO

A family of stable anticancer gold(III)-based therapeutic complexes containing cyclometalated triphenylphosphine sulfide ligands have been prepared. The anticancer properties of the newly developed complexes [AuCl2{κ2-2-C6H4P(S)Ph2}] (1), [Au(κ2-S2CNEt2){κ2-2-C6H4P(S)Ph2}]PF6 (2), [AuCl(dppe){κC-2-C6H4P(S)Ph2}]Cl (3), and [Au(dppe){κ2-2-C6H4P(S)Ph2}][PF6]2 (4) were investigated toward five human cancer cell lines [cervical (HeLa), lung (A549), prostate (PC3), fibrosarcoma (HT1080), and breast (MDA-MB-231)]. In vitro cytotoxicity studies revealed that compounds 2-4 displayed potent cell growth inhibition (IC50 values in the range of 0.17-2.50 µM), comparable to, or better than, clinically used cisplatin (0.63-6.35 µM). Preliminary mechanistic studies using HeLa cells indicate that the cytotoxic effects of the compounds involve apoptosis induction through ROS accumulation. Compound 2 also demonstrated significant inhibition of endothelial cell migration and tube formation in the angiogenesis process. Evaluation of the in vivo antitumor activity of compound 2 in nude mice bearing cervical cancer cell (HeLa) xenografts indicated significant tumor growth inhibition (55%) with 1 mg/kg dose (every 3 days) compared with the same dose of cisplatin (28%). These results demonstrate the potential of gold(III) complexes containing cyclometalated triphenylphosphine sulfide ligands as novel metal-based anticancer agents.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Complexos de Coordenação/uso terapêutico , Neoplasias/tratamento farmacológico , Fosfinas/uso terapêutico , Sulfetos/uso terapêutico , Inibidores da Angiogênese/síntese química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/uso terapêutico , Feminino , Ouro/química , Humanos , Ligantes , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfinas/síntese química , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/síntese química , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
ACS Appl Bio Mater ; 3(7): 4198-4207, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025421

RESUMO

Cubosomes with an internal three-dimensional (3D) periodic and porous particulate nanostructure have emerged as a promising drug delivery system for hydrophobic small molecules as well as large biomolecules over the past several decades. Limited understanding of their safety profiles and biodistribution, however, hinders clinical translation. This study used monoolein-based cubosomes stabilized by Pluronic F127 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)] polymers to encapsulate paclitaxel (PTX) as a model drug and investigated the in vitro cytotoxicity, in vivo acute response, and whole body biodistribution of the developed nanoparticles. Comparison of the PTX and nanoparticle cytotoxicity in two-dimensional and 3D spheroid cell models revealed distinct differences, with the cells in the 3D model found to be more tolerable to unloaded PTX as well as the PTX-loaded nanoparticle form. One-time intraperitoneal (i.p.) injection of unloaded cubosomes were generally well tolerated up to 400 mg/kg. Using the A431 skin cancer xenograft model, in vivo imaging studies showed the preferential accumulation of PTX-loaded cubosomes at the tumor sites following i.p. injection. Lastly, average tumor size was reduced by approximately 50% in the nanoparticle-based treatment group compared to the unloaded PTX drug group. The study provides significant information on the biological response of cubosomes and highlights their potential as a versatile drug delivery platform for safe and effective delivery of chemotherapeutic drugs.

13.
Chemistry ; 25(62): 14089-14100, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31414501

RESUMO

Four cycloaurated phosphine sulfide complexes, [Au{κ2 -2-C6 H4 P(S)Ph2 }2 ][AuX2 ] [X=Cl (2), Br (3), I (4)] and [Au{κ2 -2-C6 H4 P(S)Ph2 }2 ]PF6 (5), have been prepared and thoroughly characterized. The compounds were found to be stable under physiological-like conditions and showed excellent cytotoxicity against a broad range of cancer cell lines and remarkable cytotoxicity in 3D tumor spheroids. Mechanistic studies with cervical cancer (HeLa) cells indicated that the cytotoxic effects of the compounds involve the inhibition of thioredoxin reductase and induction of apoptosis through mitochondrial disruption. In vivo experiments in nude mice bearing HeLa xenografts showed that treatment with compounds 4 and 5 resulted in significant inhibition of tumor growth (35.8 and 46.9 %, respectively), better than that of cisplatin (29 %). The newly synthesized gold complexes were also evaluated for their in vitro and in vivo anti-inflammatory activity through the study of lipopolysaccharide (LPS)-activated macrophages and carrageenan-induced hind paw edema in rats, respectively.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Ouro/química , Compostos Organoáuricos/química , Fosfinas/química , Sulfetos/química , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Compostos Organoáuricos/farmacologia
14.
Onco Targets Ther ; 12: 635-645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30705592

RESUMO

Human malignancies are often the result of overexpressed and constitutively active receptor and non-receptor tyrosine kinases, which ultimately lead to the mediation of key tumor-driven pathways. Several tyrosine kinases (ie, EGFR, FGFR, PDGFR, VEGFR), are aberrantly activated in most common tumors, including leukemia, glioblastoma, gastrointestinal stromal tumors, non-small-cell lung cancer, and head and neck cancers. Iclusig™ (ponatinib, previously known as AP24534) is an orally active multi-tyrosine kinase inhibitor and is currently approved by the US Food and Drug Administration for patients with chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, specifically targeting the BCR-ABL gene mutation, T315I. Due to ponatinib's unique multi-targeted characteristics, further studies have demonstrated its ability to target other important tyrosine kinases (FGFR, PDGFR, SRC, RET, KIT, and FLT1) in other human malignancies. This review focuses on the available data of ponatinib and its molecular targets for treatment in various cancers, with a discussion on the broader potential of this agent in other cancer indications.

15.
Exp Cell Res ; 374(2): 353-364, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30562483

RESUMO

Glioblastoma (GBM) tumor cells exhibit drug resistance and are highly infiltrative. GBM stem cells (GSCs), which have low proliferative capacity are thought to be one of the sources of resistant cells which result in relapse/recurrence. However, the molecular mechanisms regulating quiescent-specific tumor cell biology are not well understood. Using human GBM cell lines and patient-derived GBM cells, Oregon Green dye retention was used to identify and isolate the slow-cycling, quiescent-like cell subpopulation from the more proliferative cells in culture. Sensitivity of cell subpopulations to temozolomide and radiation, as well as the migration and invasive potential were measured. Differential expression analysis following RNAseq identified genes enriched in the quiescent cell subpopulation. Orthotopic transplantation of cells into mice was used to compare the in vivo malignancy and invasive capacity of the cells. Proliferative quiescence correlated with better TMZ resistance and enhanced cell invasion, in vitro and in vivo. RNAseq expression analysis identified genes involved in the regulation cell invasion/migration and a three-gene signature, TGFBI, IGFBP3, CHI3L1, overexpressed in quiescent cells which correlates with poor GBM patient survival.


Assuntos
Neoplasias Encefálicas/patologia , Divisão Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioblastoma/patologia , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Cancers (Basel) ; 10(12)2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30572654

RESUMO

Signal transducer and activator of transcription 3 (STAT3) signaling is a major driver of colorectal cancer (CRC) growth, however therapeutics, which can effectively target this pathway, have so far remained elusive. Here, we performed an extensive screen for STAT3 inhibitors among a library of 1167 FDA-approved agents, identifying Ponatinib as a lead candidate. We found that Ponatinib inhibits STAT3 activity driven by EGF/EGFR, IL-6/IL-6R and IL-11/IL-11R, three major ligand/receptor systems involved in CRC development and progression. Ponatinib was able to inhibit CRC migration and tumor growth in vivo. In addition, Ponatinib displayed a greater ability to inhibit STAT3 activity and mediated superior anti-proliferative efficacy compared to five FDA approved SRC and Janus Kinase (JAK) inhibitors. Finally, long-term exposure of CRC cells to Ponatinib, Dasatinib and Bosutinib resulted in acquired resistance to Dasatinib and Bosutinib occurring within six weeks. However, acquired resistance to Ponatinib was observed after long-term exposure of >4 months. Overall, our results identify a novel anti-STAT3 property of Ponatinib and thus, Ponatinib offers a potential therapeutic strategy for CRC.

17.
Transl Oncol ; 11(6): 1406-1418, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30219696

RESUMO

The most common primary central nervous system tumor in adults is the glioblastoma multiforme (GBM). The highly invasive nature of GBM cells is a significant factor resulting in the inevitable tumor recurrence and poor patient prognosis. Tumor cells utilize structures known as invadopodia to faciliate their invasive phenotype. In this study, utilizing an array of techniques, including gelatin matrix degradation assays, we show that GBM cell lines can form functional gelatin matrix degrading invadopodia and secrete matrix metalloproteinase 2 (MMP-2), a known invadopodia-associated matrix-degrading enzyme. Furthermore, these cellular activities were augmented in cells that survived radiotherapy and temozolomide treatment, indicating that surviving cells may possess a more invasive phenotype posttherapy. We performed a screen of FDA-approved agents not previously used for treating GBM patients with the aim of investigating their "anti-invadopodia" and cytotoxic effects in GBM cell lines and identified a number that reduced cell viability, as well as agents which also reduced invadopodia activity. Importantly, two of these, pacilitaxel and vinorelbine tartrate, reduced radiation/temozolomide-induced invadopodia activity. Our data demonstrate the value of testing previously approved drugs (repurposing) as potential adjuvant agents for the treatment of GBM patients to reduce invadopodia activity, inhibit GBM cell invasion, and potentially improve patient outcome.

18.
Oncol Lett ; 16(4): 4095-4104, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30250528

RESUMO

Glioblastoma is the most common type of malignant brain tumor among adults and is currently a non-curable disease due primarily to its highly invasive phenotype, and the lack of successful current therapies. Despite surgical resection and post-surgical treatment patients ultimately develop recurrence of the tumour. Several signalling molecules have been implicated in the development, progression and aggressiveness of glioblastoma. The present study reviewed the role of interleukin (IL)-6, a cytokine known to be important in activating several pro-oncogenic signaling pathways in glioblastoma. The current study particularly focused on the contribution of IL-6 in recurrent glioblastoma, with particular focus on glioblastoma stem cells and resistance to therapy.

19.
Exp Cell Res ; 371(1): 1-19, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098332

RESUMO

Research on the epidermal growth factor (EGF) family and the family of receptors (EGFR) has progressed rapidly in recent times. New crystal structures of the ectodomains with different ligands, the activation of the kinase domain through oligomerisation and the use of fluorescence techniques have revealed profound conformational changes on ligand binding. The control of cell signaling from the EGFR-family is complex, with heterodimerisation, ligand affinity and signaling cross-talk influencing cellular outcomes. Analysis of tissue homeostasis indicates that the control of pro-ligand processing is likely to be as important as receptor activation events. Several members of the EGFR-family are overexpressed and/or mutated in cancer cells. The perturbation of EGFR-family signaling drives the malignant phenotype of many cancers and both inhibitors and antagonists of signaling from these receptors have already produced therapeutic benefits for patients. The design of affibodies, antibodies, small molecule inhibitors and even immunotherapeutic drugs targeting the EGFR-family has yielded promising new approaches to improving outcomes for cancer patients. In this review, we describe recent discoveries which have increased our understanding of the structure and dynamics of signaling from the EGFR-family, the roles of ligand processing and receptor cross-talk. We discuss the relevance of these studies to the development of strategies for designing more effective targeted treatments for cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Desenho de Fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Sítios de Ligação , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ligantes , Camundongos , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade
20.
ACS Appl Mater Interfaces ; 10(30): 25174-25185, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29963859

RESUMO

Chemotherapy using cytotoxic agents, such as paclitaxel (PTX), is one of the most effective treatments for advanced ovarian cancer. However, due to nonspecific targeting of the drug and the presence of toxic solvents required for dissolving PTX prior to injection, there are several serious side effects associated with this treatment. In this study, we explored self-assembled lipid-based nanoparticles as PTX carriers, which were able to improve its antitumour efficacy against ovarian cancer. The nanoparticles were also functionalized with epidermal growth factor receptor (EGFR) antibody fragments to explore the benefit of tumor active targeting. The formulated bicontinuous cubic- and sponge-phase nanoparticles, which were stabilized by Pluronic F127 and a lipid poly(ethylene glycol) stabilizer, showed a high capacity of PTX loading. These PTX-loaded nanoparticles also showed significantly higher cytotoxicity than a free drug formulation against HEY ovarian cancer cell lines in vitro. More importantly, the nanoparticle-based PTX treatments, with or without EGFR targeting, reduced the tumor burden by 50% compared to PTX or nondrug control in an ovarian cancer mouse xenograft model. In addition, the PTX-loaded nanoparticles were able to extend the survival of the treatment groups by up to 10 days compared to groups receiving free PTX or nondrug control. This proof-of-concept study has demonstrated the potential of these self-assembled lipid nanomaterials as effective drug delivery nanocarriers for poorly soluble chemotherapeutics, such as PTX.


Assuntos
Nanopartículas , Animais , Antineoplásicos Fitogênicos , Linhagem Celular Tumoral , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Lipídeos , Camundongos , Neoplasias Ovarianas , Paclitaxel , Polietilenoglicóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA