Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971174

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Fibrinolisina , Neoplasias Pancreáticas/patologia , Plasminogênio
2.
Blood ; 143(5): 444-455, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883802

RESUMO

ABSTRACT: Transglutaminase factor XIII (FXIII) is essential for hemostasis, wound healing, and pregnancy maintenance. Plasma FXIII is composed of A and B subunit dimers synthesized in cells of hematopoietic origin and hepatocytes, respectively. The subunits associate tightly in circulation as FXIII-A2B2. FXIII-B2 stabilizes the (pro)active site-containing FXIII-A subunits. Interestingly, people with genetic FXIII-A deficiency have decreased FXIII-B2, and therapeutic infusion of recombinant FXIII-A2 (rFXIII-A2) increases FXIII-B2, suggesting FXIII-A regulates FXIII-B secretion, production, and/or clearance. We analyzed humans and mice with genetic FXIII-A deficiency and developed a mouse model of rFXIII-A2 infusion to define mechanisms mediating plasma FXIII-B levels. Like humans with FXIII-A deficiency, mice with genetic FXIII-A deficiency had reduced circulating FXIII-B2, and infusion of FXIII-A2 increased FXIII-B2. FXIII-A-deficient mice had normal hepatic function and did not store FXIII-B in liver, indicating FXIII-A does not mediate FXIII-B secretion. Transcriptional analysis and polysome profiling indicated similar F13b levels and ribosome occupancy in FXIII-A-sufficient and -deficient mice and in FXIII-A-deficient mice infused with rFXIII-A2, indicating FXIII-A does not induce de novo FXIII-B synthesis. Unexpectedly, pharmacokinetic/pharmacodynamic modeling of FXIII-B antigen after rFXIII-A2 infusion in humans and mice suggested FXIII-A2 slows FXIII-B2 loss from plasma. Accordingly, comparison of free FXIII-B2 vs FXIII-A2-complexed FXIII-B2 (FXIII-A2B2) infused into mice revealed faster clearance of free FXIII-B2. These data show FXIII-A2 prevents FXIII-B2 loss from circulation and establish the mechanism underlying FXIII-B2 behavior in FXIII-A deficiency and during rFXIII-A2 therapy. Our findings reveal a unique, reciprocal relationship between independently synthesized subunits that mediate an essential hemostatic protein in circulation. This trial was registered at www.ClinicalTrials.com as #NCT00978380.


Assuntos
Deficiência do Fator XIII , Animais , Feminino , Humanos , Camundongos , Gravidez , Testes de Coagulação Sanguínea , Fator XIII/metabolismo , Deficiência do Fator XIII/genética , Fator XIIIa/genética , Hemostasia , Hemostáticos/sangue
3.
J Thromb Haemost ; 21(8): 2175-2188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062522

RESUMO

BACKGROUND: Hepatic deposition of cross-linked fibrin(ogen) occurs alongside platelet accumulation as a hallmark of acetaminophen (APAP)-induced liver injury. OBJECTIVES: We sought to define the precise role of the fibrinogen γ-chain C-terminal integrin αIIbß3 binding domain in APAP-induced liver injury. METHODS: Mice expressing mutant fibrinogen incapable of engaging integrin αIIbß3 due to a C-terminal fibrinogen γ-chain truncation (mutant fibrinogen-γΔ5 [FibγΔ5] mice) and wild-type mice were challenged with APAP (300 mg/kg, intraperitoneally). RESULTS: We observed an altered pattern of fibrin(ogen) deposition in the livers of APAP-challenged FibγΔ5 mice. This led to the unexpected discovery that fibrinogen γ-chain cross-linking was altered in the livers of APAP-challenged FibγΔ5 mice compared with that in wild-type mice, including absence of γ-γ dimer and accumulation of larger molecular weight cross-linked γ-chain complexes. This finding was not unique to the injured liver because activation of coagulation did not produce γ-γ dimer in plasma from FibγΔ5 mice or purified FibγΔ5 fibrinogen. Sanger sequencing predicted that the fibrinogen-γΔ5 γ-polypeptide would terminate at lysine residue 406, but liquid chromatography tandem mass spectrometry analysis revealed that this critical lysine residue was absent in purified fibrinogen-γΔ5 protein. Interestingly, hepatic deposition of this uniquely aberrantly cross-linked fibrin(ogen) in FibγΔ5 mice was associated with exacerbated hepatic injury, an effect not recapitulated by pharmacologic inhibition of integrin αIIbß3. CONCLUSION: The results indicate that fibrinogen-γΔ5 lacks critical residues essential to form γ-γ dimer in response to thrombin and suggest that hepatic accumulation of abnormally cross-linked fibrin(ogen) can exacerbate hepatic injury.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Camundongos , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Integrinas , Lisina
4.
J Thromb Haemost ; 21(3): 522-533, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696182

RESUMO

BACKGROUND: Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES: Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS: Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS: HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS: We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.


Assuntos
Fibrinogênio , Hemostáticos , Humanos , Fibrinogênio/metabolismo , Interleucina-6/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , Células Hep G2
5.
J Lipid Res ; 63(12): 100297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243101

RESUMO

Bile acids (BAs) are steroid detergents in bile that contribute to fat absorption, cell signaling, and microbiome interactions. The final step in their synthesis is amino acid conjugation with either glycine or taurine in the liver by the enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT). Here, we describe the microbial, chemical, and physiological consequences of Baat gene knockout. Baat-/- mice were underweight after weaning but quickly exhibited catch-up growth. At three weeks of age, KO animals had increased phospholipid excretion and decreased subcutaneous fat pad mass, liver mass, glycogen staining in hepatocytes, and hepatic vitamin A stores, but these were less marked in adulthood. Additionally, KO mice had an altered microbiome in early life. Their BA pool was highly enriched in cholic acid but not completely devoid of conjugated BAs. KO animals had 27-fold lower taurine-conjugated BAs than wild type in their liver but similar concentrations of glycine-conjugated BAs and higher microbially conjugated BAs. Furthermore, the BA pool in Baat-/- was enriched in a variety of unusual BAs that were putatively sourced from cysteamine conjugation with subsequent oxidation and methylation of the sulfur group mimicking taurine. Antibiotic treatment of KO mice indicated the microbiome was not the likely source of the unusual conjugations, instead, the unique BAs in KO animals were likely derived from the peroxisomal acyltransferases Acnat1 and Acnat2, which are duplications of Baat in the mouse genome that are inactivated in humans. This study demonstrates that BA conjugation is important for early life development of mice.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Adulto , Técnicas de Inativação de Genes , Camundongos Knockout , Fígado/metabolismo , Taurina/metabolismo , Glicina
6.
J Thromb Haemost ; 20(5): 1182-1192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158413

RESUMO

BACKGROUND: The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES: We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS: Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS: In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS: The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.


Assuntos
Lipopolissacarídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Transglutaminases/genética , Transglutaminases/metabolismo , Fator de Necrose Tumoral alfa
7.
Blood ; 139(9): 1302-1311, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958662

RESUMO

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking. Here, we developed a strategy to tune fibrinogen expression by administering lipid nanoparticle (LNP)-encapsulated small interfering RNA (siRNA) targeting the fibrinogen α chain (siFga). Three distinct LNP-siFga reagents reduced both hepatic Fga messenger RNA and fibrinogen levels in platelets and plasma, with plasma levels decreased to 42%, 16%, and 4% of normal within 1 week of administration. Using the most potent siFga, circulating fibrinogen was controllably decreased to 32%, 14%, and 5% of baseline with 0.5, 1.0, and 2.0 mg/kg doses, respectively. Whole blood from mice treated with siFga formed clots with significantly decreased clot strength ex vivo, but siFga treatment did not compromise hemostasis following saphenous vein puncture or tail transection. In an endotoxemia model, siFga suppressed the acute phase response and decreased plasma fibrinogen, D-dimer, and proinflammatory cytokine levels. In a sterile peritonitis model, siFga restored normal macrophage migration in plasminogen-deficient mice. Finally, treatment of mice with siFga decreased the metastatic potential of tumor cells in a manner comparable to that observed in fibrinogen-deficient mice. The results indicate that siFga causes robust and controllable depletion of fibrinogen and provides the proof-of-concept that this strategy can modulate the pleiotropic effects of fibrinogen in relevant disease models.


Assuntos
Afibrinogenemia/metabolismo , Fibrina/biossíntese , Fibrinogênio/biossíntese , Técnicas de Silenciamento de Genes , Lipossomos/farmacologia , RNA Interferente Pequeno , Afibrinogenemia/genética , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrina/genética , Fibrinogênio/genética , Humanos , Masculino , Camundongos , Nanopartículas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
8.
Blood ; 139(9): 1374-1388, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905618

RESUMO

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Assuntos
Afibrinogenemia , Plaquetas/metabolismo , Fibrinogênio , Hemostasia/genética , Mutação , Agregação Plaquetária/genética , Trombose , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Fibrinogênio/genética , Fibrinogênio/metabolismo , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/metabolismo
9.
Blood ; 138(3): 259-272, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-33827130

RESUMO

Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/efeitos dos fármacos , Cininogênios/metabolismo , Proteólise/efeitos dos fármacos , Acetaminofen/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fator XII/genética , Fator XII/metabolismo , Feminino , Fibrinolisina/genética , Humanos , Cininogênios/genética , Masculino , Camundongos , Camundongos Knockout , Pré-Calicreína/genética , Pré-Calicreína/metabolismo
10.
Semin Thromb Hemost ; 46(6): 735-742, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32906177

RESUMO

The liver is unique in its remarkable regenerative capacity, which enables the use of liver resection as a treatment for specific liver diseases, including removal of neoplastic liver disease. After resection, the remaining liver tissue (i.e, liver remnant) regenerates to maintain normal hepatic function. In experimental settings as well as patients, removal of up to two-thirds of the liver mass stimulates a rapid and highly coordinated process resulting in the regeneration of the remaining liver. Mechanisms controlling the initiation and termination of regeneration continue to be discovered, and many of the fundamental signaling pathways controlling the proliferation of liver parenchymal cells (i.e., hepatocytes) have been uncovered. Interestingly, while hemostatic complications (i.e., bleeding and thrombosis) are primarily thought of as a complication of surgery itself, strong evidence suggests that components of the hemostatic system are, in fact, powerful drivers of liver regeneration. This review focuses on the clinical and translational evidence supporting a link between the hemostatic system and liver regeneration, and the mechanisms whereby the hemostatic system directs liver regeneration discovered using experimental settings.


Assuntos
Hemostasia/fisiologia , Hepatopatias/complicações , Regeneração Hepática/fisiologia , Humanos , Hepatopatias/patologia
11.
Res Pract Thromb Haemost ; 4(5): 906-917, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32685902

RESUMO

BACKGROUND: Blood coagulation protease activity is proposed to drive hepatic fibrosis through activation of protease-activated receptors (PARs). Whole-body PAR-1 deficiency reduces experimental hepatic fibrosis, and in vitro studies suggest a potential contribution by PAR-1 expressed by hepatic stellate cells. However, owing to a lack of specific tools, the cell-specific role of PAR-1 in experimental hepatic fibrosis has never been formally investigated. Using a novel mouse expressing a conditional PAR-1 allele, we tested the hypothesis that PAR-1 expressed by hepatic stellate cells contributes to hepatic fibrosis. METHODS: PAR-1flox/flox mice were crossed with mice expressing Cre recombinase controlled by the lecithin retinol acyltransferase (LRAT) promoter, which induces recombination in hepatic stellate cells. Male PAR-1flox/flox/LRATCre and PAR-1flox/flox mice were challenged twice weekly with carbon tetrachloride (CCl4, 1 mL/kg i.p.) for 6 weeks to induce liver fibrosis. RESULTS: PAR-1 mRNA levels were reduced (>95%) in hepatic stellate cells isolated from PAR-1flox/flox/LRATCre mice. Hepatic stellate cell activation was evident in CCl4-challenged PAR-1flox/flox mice, indicated by increased α-smooth muscle actin labeling and induction of several profibrogenic genes. CCl4-challenged PAR-1flox/flox mice displayed robust hepatic collagen deposition, indicated by picrosirius red staining and type I collagen immunolabeling. Notably, stellate cell activation and collagen deposition were significantly reduced (>30%) in PAR-1flox/flox/LRATCre mice. Importantly, the reduction in liver fibrosis was not a consequence of reduced acute CCl4 hepatotoxicity in PAR-1flox/flox/LRATCre mice. CONCLUSIONS: The results constitute the first direct experimental evidence that PAR-1 expressed by stellate cells directly promotes their profibrogenic phenotype and hepatic fibrosis in vivo.

12.
Am J Pathol ; 189(10): 1986-2001, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31381887

RESUMO

Kupffer cells and monocyte-derived macrophages are critical for liver repair after acetaminophen (APAP) overdose. These cells produce promitogenic cytokines and growth factors, and they phagocytose dead cell debris, a process that is critical for resolution of inflammation. The factors that regulate these dynamic functions of macrophages after APAP overdose, however, are not fully understood. We tested the hypothesis that the fibrinolytic enzyme, plasmin, is a key regulator of macrophage function after APAP-induced liver injury. In these studies, inhibition of plasmin in mice with tranexamic acid delayed up-regulation of proinflammatory cytokines after APAP overdose. In culture, plasmin directly, and in synergy with high-mobility group B1, stimulated Kupffer cells and bone marrow-derived macrophages to produce cytokines by a mechanism that required NF-κB. Inhibition of plasmin in vivo also prevented trafficking of monocyte-derived macrophages into necrotic lesions after APAP overdose. This prevented phagocytic removal of dead cells, prevented maturation of monocyte-derived macrophages into F4/80-expressing macrophages, and prevented termination of proinflammatory cytokine production. Our studies reveal further that phagocytosis is an important stimulus for cessation of proinflammatory cytokine production as treatment of proinflammatory, monocyte-derived macrophages, isolated from APAP-treated mice, with necrotic hepatocytes decreased expression of proinflammatory cytokines. Collectively, these studies demonstrate that plasmin is an important regulator of macrophage function after APAP overdose.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fibrinolisina/metabolismo , Células de Kupffer/patologia , Macrófagos/patologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose
13.
Semin Thromb Hemost ; 44(2): 114-125, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28898899

RESUMO

Platelets are key players in thrombosis and hemostasis. Alterations in platelet count and function are common in liver disease, and may contribute to bleeding or thrombotic complications in liver diseases and during liver surgery. In addition to their hemostatic function, platelets may modulate liver diseases by mechanisms that are incompletely understood. Here, we present clinical evidence for a role of platelets in the progression of chronic and acute liver diseases, including cirrhosis, acute liver failure, and hepatocellular carcinoma. We also present clinical evidence that platelets promote liver regeneration following partial liver resection. Subsequently, we summarize studies in experimental animal models that support these clinical observations, and also highlight studies that are in contrast with clinical observations. The combined results of clinical and experimental studies suggest that platelets may be a therapeutic target in the treatment of liver injury and repair, but the gaps in our understanding of mechanisms involved in platelet-mediated modulation of liver diseases call for caution in clinical application of these findings.


Assuntos
Plaquetas/metabolismo , Inflamação/sangue , Cirrose Hepática/sangue , Hepatopatias/sangue , Regeneração Hepática/fisiologia , Humanos , Inflamação/patologia , Cirrose Hepática/patologia , Hepatopatias/patologia
14.
Toxicol Sci ; 162(2): 396-405, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29228388

RESUMO

Tissue factor (TF) is the primary activator of the blood coagulation cascade. Liver parenchymal cells (ie, hepatocytes) express TF in a molecular state that lacks procoagulant activity. Hepatocyte apoptosis is an important feature of acute and chronic liver diseases, and Fas-induced apoptosis increases hepatocyte TF procoagulant activity in vitro. We determined the impact of a pan-caspase inhibitor, IDN-7314, on hepatocyte TF activity in vitro and TF-mediated coagulation in vivo. Treatment of primary mouse hepatocytes with the Fas death receptor ligand (Jo2, 0.5 µg/ml) for 8 h increased hepatocyte TF procoagulant activity and caused release of TF-positive microvesicles. Pretreatment with 100 nM IDN-7314 abolished Jo2-induced caspase-3/7 activity and significantly reduced hepatocyte TF procoagulant activity and release of TF-positive microvesicles. Treatment of wild-type C57BL/6 mice with a sublethal dose of Jo2 (0.35 mg/kg) for 4.5 h increased coagulation, measured by a significant increase in plasma thrombin-antithrombin and TF-positive microvesicles. Total plasma microvesicle-associated TF activity was reduced in mice lacking hepatocyte TF; suggesting TF-positive microvesicles are released from the apoptotic liver. Fibrin(ogen) deposition increased in livers of Jo2-treated wild-type mice and colocalized primarily with cleaved caspase-3-positive hepatocytes. Pretreatment with IDN-7314 reduced caspase-3 activation, prevented the procoagulant changes in Jo2-treated mice, and reduced hepatocellular injury. Overall, the results indicate a central role for caspase activity in TF-mediated activation of coagulation following apoptotic liver injury. Moreover, the results suggest that liver-selective caspase inhibition may be a putative strategy to limit procoagulant and prothrombotic changes in patients with chronic liver disease.


Assuntos
Apoptose/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/irrigação sanguínea , Tromboplastina/metabolismo , Animais , Caspase 3/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/patologia , Cultura Primária de Células , Receptor fas/agonistas
15.
J Am Soc Nephrol ; 28(12): 3579-3589, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28814511

RESUMO

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-ß signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-ß-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-ß signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.


Assuntos
Rim/patologia , Fosfolipase D/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Ácido Fólico/efeitos adversos , Biblioteca Gênica , Inativação Gênica , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Sistema Imunitário , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Regulação para Cima
16.
J Clin Invest ; 127(8): 3152-3166, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28737512

RESUMO

Obesity promotes a chronic inflammatory and hypercoagulable state that drives cardiovascular disease, type 2 diabetes, fatty liver disease, and several cancers. Elevated thrombin activity underlies obesity-linked thromboembolic events, but the mechanistic links between the thrombin/fibrin(ogen) axis and obesity-associated pathologies are incompletely understood. In this work, immunohistochemical studies identified extravascular fibrin deposits within white adipose tissue and liver as distinct features of mice fed a high-fat diet (HFD) as well as obese patients. Fibγ390-396A mice carrying a mutant form of fibrinogen incapable of binding leukocyte αMß2-integrin were protected from HFD-induced weight gain and elevated adiposity. Fibγ390-396A mice had markedly diminished systemic, adipose, and hepatic inflammation with reduced macrophage counts within white adipose tissue, as well as near-complete protection from development of fatty liver disease and glucose dysmetabolism. Homozygous thrombomodulin-mutant ThbdPro mice, which have elevated thrombin procoagulant function, gained more weight and developed exacerbated fatty liver disease when fed a HFD compared with WT mice. In contrast, treatment with dabigatran, a direct thrombin inhibitor, limited HFD-induced obesity development and suppressed progression of sequelae in mice with established obesity. Collectively, these data provide proof of concept that targeting thrombin or fibrin(ogen) may limit pathologies in obese patients.


Assuntos
Fibrina/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Trombina/metabolismo , Tecido Adiposo/metabolismo , Adiposidade , Motivos de Aminoácidos , Animais , Glicemia/metabolismo , Composição Corporal , Peso Corporal , Coagulantes/farmacologia , Dabigatrana/farmacologia , Dieta Hiperlipídica , Fígado Gorduroso/metabolismo , Feminino , Genótipo , Homozigoto , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Aumento de Peso
17.
J Hepatol ; 66(4): 787-797, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27965156

RESUMO

BACKGROUND & AIMS: Acetaminophen (APAP)-induced liver injury is coupled with activation of the blood coagulation cascade and fibrin(ogen) accumulation within APAP-injured livers of experimental mice. We sought to define the role of fibrin(ogen) deposition in APAP-induced liver injury and repair. METHODS: Wild-type, fibrinogen-deficient mice, mutant mice with fibrin(ogen) incapable of binding leukocyte αMß2 integrin (Fibγ390-396A mice) and matrix metalloproteinase 12 (Mmp12)-deficient mice were fasted, injected with 300mg/kg APAP i.p. and evaluated at a range of time-points. Plasma and liver tissue were analyzed. Rescue of Fibγ390-396A mice was carried out with exogenous Mmp12. To examine the effect of the allosteric leukocyte integrin αMß2 activator leukadherin-1 (LA-1), APAP-treated mice were injected with LA-1. RESULTS: In wild-type mice, APAP overdose increased intrahepatic levels of high molecular weight cross-linked fibrin(ogen). Anticoagulation reduced early APAP hepatotoxicity (6h), but increased hepatic injury at 24h, implying a protective role for coagulation at the onset of repair. Complete fibrin(ogen) deficiency delayed liver repair after APAP overdose, evidenced by a reduction of proliferating hepatocytes (24h) and unresolved hepatocellular necrosis (48 and 72h). Fibγ390-396A mice had decreased hepatocyte proliferation and increased multiple indices of liver injury, suggesting a mechanism related to fibrin(ogen)-leukocyte interaction. Induction of Mmp12, was dramatically reduced in APAP-treated Fibγ390-396A mice. Mice lacking Mmp12 displayed exacerbated APAP-induced liver injury, resembling Fibγ390-396A mice. In contrast, administration of LA-1 enhanced hepatic Mmp12 mRNA and reduced necrosis in APAP-treated mice. Further, administration of recombinant Mmp12 protein to APAP-treated Fibγ390-396A mice restored hepatocyte proliferation. CONCLUSIONS: These studies highlight a novel pathway of liver repair after APAP overdose, mediated by fibrin(ogen)-αMß2 integrin engagement, and demonstrate a protective role of Mmp12 expression after APAP overdose. LAY SUMMARY: Acetaminophen overdose leads to activation of coagulation cascade and deposition of high molecular weight cross-linked fibrin(ogen) species in the liver. Fibrin(ogen) is required for stimulating liver repair after acetaminophen overdose. The mechanism whereby fibrin(ogen) drives liver repair after acetaminophen overdose requires engagement of leukocyte αMß2 integrin and subsequent induction of matrix metalloproteinase 12.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Antígeno de Macrófago 1/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Acetaminofen/toxicidade , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Antitrombinas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dabigatrana/farmacologia , Feminino , Fibrina/deficiência , Fibrina/genética , Fibrinogênio/genética , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Regeneração Hepática/efeitos dos fármacos , Regeneração Hepática/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/deficiência , Metaloproteinase 12 da Matriz/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes
18.
Toxicology ; 365: 9-16, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475285

RESUMO

Emerging evidence supports a protective effect of platelets in experimental cholestatic liver injury and cholangiofibrosis. Coagulation-mediated platelet activation has been shown to inhibit experimental chronic cholestatic liver necrosis and biliary fibrosis. This occurs through thrombin-mediated activation of protease activated receptor-4 (PAR-4) in mice. However, it is not known whether other pathways of platelet activation, such as adenosine diphosphate (ADP)-mediated receptor P2Y12 activation is also protective. We tested the hypothesis that inhibition of P2Y12-mediated platelet activation exacerbates hepatic injury and cholangiofibrosis, and examined the impact of P2Y12 inhibition in both the presence and absence of PAR-4. Treatment of wild-type mice with the P2Y12 receptor antagonist clopidogrel increased biliary hyperplasia and cholangiofibrosis in wild-type mice exposed to the xenobiotic alpha-naphthylisothiocyanate (ANIT) for 4 weeks compared to vehicle-treated mice exposed to ANIT. Interestingly, this effect of clopidogrel occurred without a corresponding increase in hepatocellular necrosis. Whereas biliary hyperplasia and cholangiofibrosis were increased in PAR-4(-/-) mice, clopidogrel treatment failed to further increase these pathologies in PAR-4(-/-) mice. The results indicate that inhibition of receptor P2Y12-mediated platelet activation exacerbates bile duct fibrosis in ANIT-exposed mice, independent of hepatocellular necrosis. Moreover, the lack of an added effect of clopidogrel administration on the exaggerated pathology in ANIT-exposed PAR-4(-/-) mice reinforces the prevailing importance of coagulation-mediated platelet activation in limiting this unique liver pathology.


Assuntos
Colestase/patologia , Cirrose Hepática/patologia , Ativação Plaquetária/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Ativados por Proteinase/antagonistas & inibidores , Ticlopidina/análogos & derivados , 1-Naftilisotiocianato , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colestase/induzido quimicamente , Clopidogrel , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Ativados por Proteinase/metabolismo , Serotonina/sangue , Ticlopidina/farmacologia , Xenobióticos
19.
Thromb J ; 14: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158246

RESUMO

BACKGROUND: Dabigatran etexilate may be underutilized in geriatric patients because of inadequate clinical experience in individuals with severe renal impairment and post-marketing reports of bleeding events. Assessing the degree of anticoagulation may improve the risk:benefit ratio for dabigatran. The aim of this prospective study was to identify whether therapeutic drug monitoring of dabigatran anticoagulant activity using a chromogenic anti-factor IIa assay is a viable option for therapy individualization. METHODS: Plasma dabigatran concentration was assessed in nine patients with nonvalvular atrial fibrillation aged 75 years or older currently receiving dabigatran etexilate for prevention of stroke, using an anti-factor IIa chromogenic assay and HPLC-MS/MS. Trough concentrations were evaluated on two separate occasions to determine intrapatient variation. RESULTS: Blood was collected at 13.1 ± 2.3 h (mean ± SD) post dose from patients prescribed dabigatran etexilate 150 mg twice daily (5/9 patients) or dabigatran etexilate 75 mg twice daily (4/9 patients). Results from the anti-factor IIa chromogenic assay correlated with dabigatran concentrations as assessed by HPLC-MS/MS (r (2) = 0.81, n = 16). There was no correlation between dabigatran trough values taken at separate visits (r (2) = 0.002, n = 7). Furthermore, there was no correlation found between the drug concentrations and patients' renal function determined by both creatinine and cystatin-C based equations. None of the patients enrolled in the study were in the proposed on-therapy trough range during at least one visit. CONCLUSION: The chromogenic anti-factor IIa assay demonstrated similar performance in quantifying dabigatran plasma trough concentrations to HPLC-MS/MS. Single measurement of dabigatran concentration by either of two methods during routine visits may not be reliable in identifying patients at consistently low or high dabigatran concentrations.

20.
Am J Physiol Gastrointest Liver Physiol ; 310(5): G295-302, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26744468

RESUMO

Farnesoid X receptor (FXR) belongs to the nuclear receptor superfamily with its endogenous ligands bile acids. Mice with whole body FXR deficiency develop liver tumors spontaneously, but the underlying mechanism is unclear. Moreover, it is unknown whether FXR deficiency in liver alone serves as a tumor initiator or promoter during liver carcinogenesis. This study aims to evaluate the effects of hepatocyte-specific FXR deficiency (FXR(hep-/-)) in liver tumor formation. The results showed that FXR(hep-/-) mice did not show spontaneous liver tumorigenesis with aging (up to 24 mo of age). Therefore FXR(hep-/-) mice were fed a bile acid (cholic acid)-containing diet alone or along with a liver tumor initiator, diethylnitrosamine (DEN). Thirty weeks later, no tumors were found in wild-type or FXR(hep-/-) mice without any treatment or with DEN only. However, with cholic acid, while only some wild-type mice developed tumors, all FXR(hep-/-) mice presented with severe liver injury and tumors. Interestingly, FXR(hep-/-) mouse livers increased basal expression of tumor suppressor p53 protein, apoptosis, and decreased basal cyclin D1 expression, which may prevent tumor development in FXR(hep-/-) mice. However, cholic acid feeding reversed these effects in FXR(hep-/-) mice, which is associated with an increased cyclin D1 and decreased cell cycle inhibitors. More in-depth analysis indicates that the increased in cell growth might result from disturbance of the MAPK and JAK/Stat3 signaling pathways. In conclusion, this study shows that hepatic FXR deficiency may only serve as a tumor initiator, and increased bile acids is required for tumor formation likely by promoting cell proliferation.


Assuntos
Ácido Cólico/metabolismo , Ciclina D1/metabolismo , Hepatócitos , Neoplasias Hepáticas , Receptores Citoplasmáticos e Nucleares , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinogênese/metabolismo , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/farmacologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Janus Quinases/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Animais , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA