Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 22(1): 233, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964282

RESUMO

BACKGROUND: Pamamycins are a family of highly bioactive macrodiolide polyketides produced by Streptomyces alboniger as a complex mixture of derivatives with molecular weights ranging from 579 to 705 Daltons. The large derivatives are produced as a minor fraction, which has prevented their isolation and thus studies of chemical and biological properties. RESULTS: Herein, we describe the transcriptional engineering of the pamamycin biosynthetic gene cluster (pam BGC), which resulted in the shift in production profile toward high molecular weight derivatives. The pam BGC library was constructed by inserting randomized promoter sequences in front of key biosynthetic operons. The library was expressed in Streptomyces albus strain with improved resistance to pamamycins to overcome sensitivity-related host limitations. Clones with modified pamamycin profiles were selected and the properties of engineered pam BGC were studied in detail. The production level and composition of the mixture of pamamycins was found to depend on balance in expression of the corresponding biosynthetic genes. This approach enabled the isolation of known pamamycins and the discovery of three novel derivatives with molecular weights of 663 Da and higher. One of them, homopamamycin 677A, is the largest described representative of this family of natural products with an elucidated structure. The new pamamycin 663A shows extraordinary activity (IC50 2 nM) against hepatocyte cancer cells as well as strong activity (in the one-digit micromolar range) against a range of Gram-positive pathogenic bacteria. CONCLUSION: By employing transcriptional gene cluster refactoring, we not only enhanced the production of known pamamycins but also discovered novel derivatives exhibiting promising biological activities. This approach has the potential for broader application in various biosynthetic gene clusters, creating a sustainable supply and discovery platform for bioactive natural products.


Assuntos
Produtos Biológicos , Policetídeos , Macrolídeos , Família Multigênica
2.
Metab Eng ; 78: 48-60, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142115

RESUMO

Derivatizing natural products (NPs) is essential in structure-activity relationship (SAR) studies, compound optimization, and drug development. Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent one of the major classes of natural products. Thioholgamide represents thioamitide - a recently emerged family of RiPPs with unique structures and great potential in anticancer drug development. Although the method for generating the RiPP library by codon substitutions in the precursor peptide gene is straightforward, the techniques to perform RiPP derivatization in Actinobacteria remain limited and time-consuming. Here, we report a facile system for producing a library of randomized thioholgamide derivatives utilizing an optimized Streptomyces host. This technique enabled us to access all possible amino acid substitutions of the thioholgamide molecule, one position at a time. Out of 152 potential derivatives, 85 were successfully detected, revealing the impact of amino acid substitutions on thioholgamide post-translational modifications (PTMs). Moreover, new PTMs were observed among thioholgamide derivatives: thiazoline heterocycles, which have not yet been reported for thioamitides, and S-methylmethionine, which is very rare in nature. The obtained library was subsequently used for thioholgamide SAR studies and stability assays.


Assuntos
Produtos Biológicos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Peptídeos/química , Processamento de Proteína Pós-Traducional , Biblioteca Gênica , Produtos Biológicos/metabolismo
3.
Microorganisms ; 10(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36144353

RESUMO

Natural products derived from plants, fungi or bacteria have been used for years in the medicine, agriculture and food industries as they exhibit a variety of beneficial properties, such as antibiotic, antifungal, anticancer, herbicidal and immunosuppressive activities. Compared to synthetic compounds, natural products possess a greater chemical diversity, which is a reason why they are profitable templates for developing pharmaceutical drug candidates and ongoing research on them is inevitable. Performing heterologous expression with unknown gene clusters is the preferred method to activate gene clusters that are not expressed in the wild-type strain under laboratory conditions; thus, this method offers a way to discover new interesting metabolites. Here, we report the gene cluster assembly of a hybrid NRPS-PKS gene cluster from Streptomyces mirabilis Lu17588, which was heterologously expressed in Streptomyces albus Del14. Four new compounds were produced by the obtained strain, which were named miramides A-D. Isolation and structure elucidation revealed similarity of the isolated compounds to the known depsipeptides rimosamides/detoxins.

4.
J Am Chem Soc ; 144(11): 5136-5144, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35263083

RESUMO

Thioholgamides are ribosomally synthesized and posttranslationally modified peptides (RiPPs), with potent activity against cancerous cell lines and an unprecedented structure. Despite being one of the most structurally and chemically complex RiPPs, very few biosynthetic steps have been elucidated. Here, we report the complete in vitro reconstitution of the biosynthetic pathway. We demonstrate that thioamidation is the first step and acts as a gatekeeper for downstream processing. Thr dehydration follows thioamidation, and our studies reveal that both these modifications require the formation of protein complexes─ThoH/I and ThoC/D. Harnessing the power of AlphaFold, we deduce that ThoD acts as a lyase and also proposes putative catalytic residues. ThoF catalyzes the oxidative decarboxylation of the terminal Cys, and the subsequent macrocyclization is facilitated by ThoE. This is followed by Ser dehydration, which is also carried out by ThoC/D. ThoG is responsible for histidine bis-N-methylation, which is a prerequisite for His ß-hydroxylation─a modification carried out by ThoJ. The last step of the pathway is the removal of the leader peptide by ThoK to afford mature thioholgamide.


Assuntos
Desidratação , Sinais Direcionadores de Proteínas , Histidina , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional
5.
ACS Chem Biol ; 17(3): 598-608, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35253423

RESUMO

Isoquinoline alkaloids are a large class of natural products with a broad range of biological activities, including antimicrobial, antitumor, antileukemic and anti-inflammatory properties. Although mostly found in plants, isoquinolines can also be found in the extracts of bacterial and fungal cultures. Regardless of the origin, most of the reported biosynthetic routes for isoquinolines use tyrosine as a main biosynthetic precursor. Here, we report the identification of a new biosynthetic pathway for production of isoquinolinequinone alkaloid mansouramycin D in Streptomyces albus Del14. Using feeding, mass spectrometry, and nuclear magnetic resonance spectroscopy, we demonstrate that tryptophan serves instead of tyrosine as a main mansouramycin biosynthetic precursor. The biosynthetic genes were identified in the chromosome of the strain by using gene inactivation and heterologous expression. Insights into the biosynthesis of mansouramycins are also presented.


Assuntos
Alcaloides , Isoquinolinas , Alcaloides/química , Vias Biossintéticas/genética , Isoquinolinas/metabolismo , Tirosina/metabolismo
6.
Nat Prod Res ; 35(24): 5960-5963, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32799581

RESUMO

Pyrethrum pulchrum Ledeb. has been a phytochemically unexplored Mongolian medicinal folklore plant. In this study, its total flavonoid content was determined and fourteen flavonoids (1-14) were isolated from the aerial parts of P. pulchrum. Their structures were elucidated on the basis of spectroscopic data. The compounds 12-14, methoxyflavones, were tested for antiproliferative and cytotoxic activity against A549, HeLa, K-562, THP-1 and HUVEC cell lines. This is the first report on the effects of 5,7,4'-trihydroxy-3,6,3'-trimethoxyflavone (13) against all tested cell lines and it exhibited potent activity against chronic myeloid leukemia K-562 and acute monocytic leukemia THP-1 cells, each with GI50 value at 2.0 µg/mL. The 5,4'-dihydroxy-3,6,7,3'-tetramethoxyflavone (14) showed the most potent activity against THP-1 (GI50 = 1.1 µg/mL) and the highest cytotoxicity (5.6 µg/mL). In addition, acute toxicity of plant ethanol extract was evaluated and the lethal dose (LD50) was estimated at 1048 mg/kg.


Assuntos
Chrysanthemum cinerariifolium , Plantas Medicinais , Linhagem Celular Tumoral , Flavonoides/farmacologia , Extratos Vegetais/farmacologia
7.
ACS Chem Biol ; 15(10): 2815-2819, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32965102

RESUMO

Thioviridamide-like compounds, including thioholgamides, are ribosomally synthesized and post-translationally modified peptide natural products with potent anticancer cell activity and an unprecedented structure. Very little is known about their biosynthesis, and we were intrigued by the ß-hydroxy-N1, N3-dimethylhistidinium moiety found in these compounds. Here we report the construction of a heterologous host capable of producing thioholgamide with a 15-fold increased yield compared to the wild-type strain. A knockout of thoJ, encoding a predicted nonheme monooxygenase, shows that ThoJ is essential for thioholgamide ß-hydroxylation. The crystal structure of ThoJ exhibits a typical mono/dioxygenase fold with conserved key active-site residues. Yet, ThoJ possesses a very large substrate binding pocket that appears suitable to receive a cyclic thioholgamide intermediate for hydroxylation. The improved production of the heterologous host will enable the dissection of the individual biosynthetic steps involved in biosynthesis of this exciting RiPP family.


Assuntos
Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/metabolismo , Peptídeos Cíclicos/metabolismo , Tioamidas/metabolismo , Proteínas de Bactérias/química , Histidina/química , Hidroxilação , Oxigenases de Função Mista/química , Peptídeos Cíclicos/química , Processamento de Proteína Pós-Traducional , Streptomyces/enzimologia , Streptomyces/metabolismo , Especificidade por Substrato , Tioamidas/química
8.
Biomolecules ; 10(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708402

RESUMO

Pyrrolopyrimidines are an important class of natural products with a broad spectrum of biological activities, including antibacterial, antifungal, antiviral, anticancer or anti-inflammatory. Here, we present the identification of a biosynthetic gene cluster from the rare actinomycete strain Kutzneria albida DSM 43870, which leads to the production of huimycin, a new member of the pyrrolopyrimidine family of compounds. The huimycin gene cluster was successfully expressed in the heterologous host strain Streptomyces albus Del14. The compound was purified, and its structure was elucidated by means of nuclear magnetic resonance spectroscopy. The minimal huimycin gene cluster was identified through sequence analysis and a series of gene deletion experiments. A model for huimycin biosynthesis is also proposed in this paper.


Assuntos
Actinobacteria/genética , Produtos Biológicos/metabolismo , Vias Biossintéticas , Família Multigênica , Pirimidinas/metabolismo , Pirróis/metabolismo , Actinobacteria/metabolismo , Expressão Gênica , Genes Bacterianos , Streptomyces/genética , Streptomyces/metabolismo
9.
Mar Drugs ; 18(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481766

RESUMO

Streptomycetes are an important source of natural products potentially applicable in the pharmaceutical industry. Many of these drugs are secondary metabolites whose biosynthetic genes are very often poorly expressed under laboratory cultivation conditions. In many cases, antibiotic-resistant mutants exhibit increased production of natural drugs, which facilitates the identification and isolation of new substances. In this study, we report the induction of a type II polyketide synthase gene cluster in the marine strain Streptomyces albus subsp. chlorinus through the selection of streptomycin-resistant mutants, resulting in overproduction of the novel compound fredericamycin C2 (1). Fredericamycin C2 (1) is structurally related to the potent antitumor drug lead fredericamycin A.


Assuntos
Alcenos/metabolismo , Antibacterianos/metabolismo , Isoquinolinas/metabolismo , Streptomyces/metabolismo , Organismos Aquáticos , Produtos Biológicos/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Espectroscopia de Ressonância Magnética , Streptomyces/química , Relação Estrutura-Atividade
10.
Cancers (Basel) ; 12(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438733

RESUMO

Natural products represent powerful tools searching for novel anticancer drugs. Thioholgamide A (thioA) is a ribosomally synthesized and post-translationally modified peptide, which has been identified as a product of Streptomyces sp. MUSC 136T. In this study, we provide a comprehensive biological profile of thioA, elucidating its effects on different hallmarks of cancer in tumor cells as well as in macrophages as crucial players of the tumor microenvironment. In 2D and 3D in vitro cell culture models thioA showed potent anti-proliferative activities in cancer cells at nanomolar concentrations. Anti-proliferative actions were confirmed in vivo in zebrafish embryos. Cytotoxicity was only induced at several-fold higher concentrations, as assessed by live-cell microscopy and biochemical analyses. ThioA exhibited a potent modulation of cell metabolism by inhibiting oxidative phosphorylation, as determined in a live-cell metabolic assay platform. The metabolic modulation caused a repolarization of in vitro differentiated and polarized tumor-promoting human monocyte-derived macrophages: ThioA-treated macrophages showed an altered morphology and a modulated expression of genes and surface markers. Taken together, the metabolic regulator thioA revealed low activities in non-tumorigenic cells and an interesting anti-cancer profile by orchestrating different hallmarks of cancer, both in tumor cells as well as in macrophages as part of the tumor microenvironment.

11.
Microorganisms ; 8(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392775

RESUMO

Natural products produced by bacteria found in unusual and poorly studied ecosystems, such as Lake Baikal, represent a promising source of new valuable drug leads. Here we report the isolation of a new Streptomyces sp. strain IB201691-2A from the Lake Baikal endemic mollusk Benedictia baicalensis. In the course of an activity guided screening three new angucyclines, named baikalomycins A-C, were isolated and characterized, highlighting the potential of poorly investigated ecological niches. Besides that, the strain was found to accumulate large quantities of rabelomycin and 5-hydroxy-rabelomycin, known shunt products in angucyclines biosynthesis. Baikalomycins A-C demonstrated varying degrees of anticancer activity. Rabelomycin and 5-hydroxy-rabelomycin further demonstrated antiproliferative activities. The structure elucidation showed that baikalomycin A is a modified aquayamycin with ß-d-amicetose and two additional hydroxyl groups at unusual positions (6a and 12a) of aglycone. Baikalomycins B and C have alternating second sugars attached, α-l-amicetose and α-l-aculose, respectively. The gene cluster for baikalomycins biosynthesis was identified by genome mining, cloned using a transformation-associated recombination technique and successfully expressed in S. albus J1074. It contains a typical set of genes responsible for an angucycline core assembly, all necessary genes for the deoxy sugars biosynthesis, and three genes coding for the glycosyltransferase enzymes. Heterologous expression and deletion experiments allowed to assign the function of glycosyltransferases involved in the decoration of baikalomycins aglycone.

12.
Mol Microbiol ; 112(1): 249-265, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31017319

RESUMO

Members of actinobacterial genus Streptomyces possess a sophisticated life cycle and are the deepest source of bioactive secondary metabolites. Although morphogenesis and secondary metabolism are subject to transcriptional co-regulation, streptomycetes employ an additional mechanism to initiate the aforementioned processes. This mechanism is based on delayed translation of rare leucyl codon UUA by the only cognate tRNALeu UAA (encoded by bldA). The bldA-based genetic switch is an extensively documented example of translational regulation in Streptomyces. Yet, after five decades since the discovery of bldA, factors that shape its function and peculiar conditionality remained elusive. Here we address the hypothesis that post-transcriptional tRNA modifications play a role in tRNA-based mechanisms of translational control in Streptomyces. Particularly, we studied two Streptomyces albus J1074 genes, XNR_1074 (miaA) and XNR_1078 (miaB), encoding tRNA (adenosine(37)-N6)-dimethylallyltransferase and tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase respectively. These enzymes produce, in a sequential manner, a hypermodified ms2 i6 A37 residue in most of the A36-A37-containing tRNAs. We show that miaB and especially miaA null mutant of S. albus possess altered morphogenesis and secondary metabolism. We provide genetic evidence that miaA deficiency impacts translational level of gene expression, most likely through impaired decoding of codons UXX and UUA in particular.


Assuntos
Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Códon/genética , Regulação Bacteriana da Expressão Gênica/genética , Genes Bacterianos/genética , Leucina-tRNA Ligase/metabolismo , Biossíntese de Proteínas/genética , Proteômica , RNA Bacteriano/metabolismo , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Metabolismo Secundário/fisiologia , Streptomyces/metabolismo , Sulfurtransferases/metabolismo
13.
Microbiology (Reading) ; 165(2): 233-245, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543507

RESUMO

Streptomyces ghanaensis ATCC14672 is remarkable for its production of phosphoglycolipid compounds, moenomycins, which serve as a blueprint for the development of a novel class of antibiotics based on inhibition of peptidoglycan glycosyltransferases. Here we employed mariner transposon (Tn) mutagenesis to find new regulatory genes essential for moenomycin production. We generated a library of 3000 mutants which were screened for altered antibiotic activity. Our focus centred on a single mutant, HIM5, which accumulated lower amounts of moenomycin and was impaired in morphogenesis as compared to the parental strain. HIM5 carried the Tn insertion within gene ssfg_01967 for putative tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase, or MiaB, and led to a reduced level of thiomethylation at position 37 in the anticodon of S. ghanaensis transfer ribonucleic acid (tRNA). It is likely that the mutant phenotype of HIM5 stems from the way in which ssfg_01967::Tn influences translation of the rare leucine codon UUA in several genes for moenomycin production and life cycle progression in S. ghanaensis. This is the first report showing that quantitative changes in tRNA modification status in Streptomyces have physiological consequences.


Assuntos
Antibacterianos/biossíntese , Genes Bacterianos , Oligossacarídeos/biossíntese , RNA de Transferência/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Mutagênese Insercional , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Esporos Bacterianos , Streptomyces/fisiologia , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
14.
Front Microbiol ; 9: 1174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915569

RESUMO

Gram-positive Streptomyces bacteria are profuse secretors of polypeptides using complex, yet unknown mechanisms. Many of their secretory proteins are proteases that play important roles in the acquisition of amino acids from the environment. Other proteases regulate cellular proteostasis. To begin dissecting the possible role of proteases in Streptomyces secretion, we applied a multi-omics approach. We probed the role of the 190 proteases of Streptomyces lividans strain TK24 in protein secretion in defined media at different stages of growth. Transcriptomics analysis revealed transcripts for 93% of these proteases and identified that 41 of them showed high abundance. Proteomics analysis identified 57 membrane-embedded or secreted proteases with variations in their abundance. We focused on 17 of these proteases and putative inhibitors and generated strains deleted of their genes. These were characterized in terms of their fitness, transcriptome and secretome changes. In addition, we performed a targeted analysis in deletion strains that also carried a secretion competent mRFP. One strain, carrying a deletion of the gene for the regulatory protease FtsH, showed significant global changes in overall transcription and enhanced secretome and secreted mRFP levels. These data provide a first multi-omics effort to characterize the complex regulatory mechanisms of protein secretion in Streptomyces lividans and lay the foundations for future rational manipulation of this process.

15.
Antonie Van Leeuwenhoek ; 108(2): 391-402, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036671

RESUMO

Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.


Assuntos
Arnica/microbiologia , Endófitos/química , Endófitos/isolamento & purificação , Plantas Medicinais/microbiologia , Streptomyces/química , Streptomyces/isolamento & purificação , Antibacterianos/análise , Produtos Biológicos/análise , Vias Biossintéticas/genética , Endófitos/classificação , Endófitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma , Família Multigênica , Metabolismo Secundário , Streptomyces/classificação , Streptomyces/metabolismo
17.
Appl Microbiol Biotechnol ; 87(4): 1525-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20473607

RESUMO

Actinomycetes are Gram-positive bacteria with a complex life cycle. They produce many pharmaceutically relevant secondary metabolites, including antibiotics and anticancer drugs. However, there is a limited number of biotechnological applications available as opposed to genetic model organisms like Bacillus subtilis or Escherichia coli. We report here a system for the functional expression of a synthetic gene encoding the I-SceI homing endonuclease in several streptomycetes. Using the synthetic sce(a) gene, we were able to create controlled genomic DNA double-strand breaks. A mutagenesis system, based on the homing endonuclease I-SceI, has been developed to construct targeted, non-polar, unmarked gene mutations in Streptomyces sp. Tü6071. In addition, we have shown that homologous recombination is a major pathway in streptomycetes to repair an I-SceI-generated DNA double-strand break. This novel I-SceI-based tool will be useful in fundamental studies on the repair mechanism of DNA double-strand breaks and for a variety of biotechnological applications.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , Desoxirribonuclease I/metabolismo , Técnicas Genéticas , Streptomyces/genética , Proteínas de Bactérias/genética , Quebras de DNA de Cadeia Dupla , Desoxirribonuclease I/genética , Genes Sintéticos , Mutagênese , Recombinação Genética , Streptomyces/metabolismo
18.
Appl Microbiol Biotechnol ; 80(6): 945-52, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18777021

RESUMO

The bioactivity of many natural products including valuable antibiotics and anticancer therapeutics depends on their sugar moieties. Changes in the structures of these sugars can deeply influence the biological activity, specificity and pharmacological properties of the parent compounds. The chemical synthesis of such sugar ligands is exceedingly difficult to carry out and therefore impractical to establish on a large scale. Therefore, glycosyltransferases are essential tools for chemoenzymatic and in vivo approaches for the development of complex glycosylated natural products. In the last 10 years, several examples of successful alteration and diversification of natural product glycosylation patterns via metabolic pathway engineering and enzymatic glycodiversification have been described. Due to the relaxed substrate specificity of many sugar biosynthetic enzymes and glycosyltransferases involved in natural product biosynthesis, it is possible to obtain novel glycosylated compounds using different methods. In this review, we would like to provide an overview of recent advances in diversification of the glycosylated natural products and glycosyltransferase engineering.


Assuntos
Proteínas de Bactérias/metabolismo , Biotecnologia/métodos , Biotransformação , Glicosiltransferases/metabolismo , Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Glicosiltransferases/genética
19.
Appl Microbiol Biotechnol ; 80(1): 15-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18553079

RESUMO

Expression of the aranciamycin biosynthetic gene cluster in Streptomyces diastatochromogenes Tü6028 resulted in production of four novel compounds, aranciamycins E, F, G, and H with different decorations in the tetracyclic backbone. Two derivatives contain a D-amicetose moiety at C7 (aranciamycins F and G), two are hydroxylated at position C1 (aranciamycins E and G), and one is hydroxylated at C13 (aranciamycin F). Analysis of the biological activities of the aranciamycins against two human tumor cell lines--MCF-7 and MATU--shows surprising impact of the hydroxyl group at position C1 on activity. As aranciamycins E and G were the most active derivatives, hydroxylation of the C1 appears to coincide with increased antitumor activity of aranciamycins.


Assuntos
Antraciclinas/química , Antraciclinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Engenharia Genética , Streptomyces/metabolismo , Sequência de Aminoácidos , Antraciclinas/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Streptomyces/química , Streptomyces/genética , Relação Estrutura-Atividade
20.
Chembiochem ; 8(1): 83-8, 2007 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-17139690

RESUMO

Two novel landomycin compounds, landomycins I and J, were generated with a new mutant strain of Streptomyces cyanogenus in which the glycosyltransferase that is encoded by lanGT3 was over-expressed. This mutant also produced the known landomycins A, B, and D. All these compounds consist of the same polyketide-derived aglycon but differ in their sugar moieties, which are chains of different lengths. The major new metabolite, landomycin J, was found to consist of landomycinone with a tetrasaccharide chain attached. Combined with previous results of the production of landomycin E (which contains three sugars) by the LanGT3- mutant strain (obtained by targeted gene deletion of lanGT3), it was verified that LanGT3 is a D-olivosyltransferase responsible for the transfer of the fourth sugar required for landomycin A biosynthesis. The experiments also showed that gene over-expression is a powerful method for unbalancing biosynthetic pathways in order to generate new metabolites. The cytotoxicity of the new landomycins--compared to known ones--was assessed by using three different tumor cell lines, and their structure-activity relationship (SAR) with respect to the length of the deoxysugar side chain was deduced from the results.


Assuntos
Aminoglicosídeos/química , Glicosiltransferases/química , Família Multigênica , Polissacarídeos/química , Streptomyces/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Espectroscopia de Ressonância Magnética , Mutação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA