Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Microbiol Spectr ; 10(5): e0250822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173332

RESUMO

HIV-1 sequence population structure among brain and nonbrain cellular compartments is incompletely understood. Here, we compared proviral pol and env high-quality consensus single-molecule real-time (SMRT) sequences derived from CD3+ T cells and CD14+ macrophage lineage cells from meningeal or peripheral (spleen, blood) tissues obtained at autopsy from two individuals with viral suppression on antiretroviral therapy (ART). Phylogenetic analyses showed strong evidence of population structure between CD3+ and CD14+ virus populations. Distinct env variable-region characteristics were also found between CD3+ and CD14+ viruses. Furthermore, shared macrophage-tropic amino acid residues (env) and drug resistance mutations (pol) between meningeal and peripheral virus populations were consistent with the meninges playing a role in viral gene flow across the blood-brain barrier. Overall, our results point toward potential functional differences among meningeal and peripheral CD3+ and CD14+ virus populations and a complex evolutionary history driven by distinct selection pressures and/or viral gene flow. IMPORTANCE Different cell types and/or tissues may serve as a reservoir for HIV-1 during ART-induced viral suppression. We compared proviral pol and env sequences from CD3+ T cells and CD14+ macrophage lineage cells from brain and nonbrain tissues from two virally suppressed individuals. We found strong evidence of viral population structure among cells/tissues, which may result from distinct selective pressures across cell types and anatomic sites.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Filogenia , Linfócitos T , Infecções por HIV/tratamento farmacológico , Macrófagos , Meninges , Aminoácidos
2.
Front Immunol ; 13: 860418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432380

RESUMO

Background: Despite a successful antiretroviral therapy (ART), adolescents living with perinatally acquired HIV (PHIV) experience signs of B-cell hyperactivation with expansion of 'namely' atypical B-cell phenotypes, including double negative (CD27-IgD-) and termed age associated (ABCs) B-cells (T-bet+CD11c+), which may result in reduced cell functionality, including loss of vaccine-induced immunological memory and higher risk of developing B-cells associated tumors. In this context, perinatally HIV infected children (PHIV) deserve particular attention, given their life-long exposure to chronic immune activation. Methods: We studied 40 PHIV who started treatment by the 2nd year of life and maintained virological suppression for 13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma (Spike). We applied a multi-disciplinary approach including immunological B and T cell phenotype, plasma proteomics analysis, and serum level of anti-measles antibodies as functional correlates of vaccine-induced immunity. Results: Phenotypic signs of B cell hyperactivation were elevated in subjects starting ART later (%DN T-bet+CD11c+ p=0.03; %AM T-bet+CD11c+ p=0.02) and were associated with detectable cell-associated HIV-1 RNA (%AM T-bet+CD11c+ p=0.0003) and transient elevation of the plasma viral load (spike). Furthermore, B-cell hyperactivation appeared to be present in individuals with higher frequency of exhausted T-cells, in particular: %CD4 TIGIT+ were associated with %DN (p=0.008), %DN T-bet+CD11c+ (p=0.0002) and %AM T-bet+CD11c+ (p=0.002) and %CD4 PD-1 were associated with %DN (p=0.048), %DN T-bet+CD11c+ (p=0.039) and %AM T-bet+CD11c+ (p=0.006). The proteomic analysis revealed that subjects with expansion of these atypical B-cells and exhausted T-cells had enrichment of proteins involved in immune inflammation and complement activation pathways. Furthermore, we observed that higher levels of ABCs were associated a reduced capacity to maintain vaccine-induced antibody immunity against measles (%B-cells CD19+CD10- T-bet+, p=0.035). Conclusion: We identified that the levels of hyperactivated B cell subsets were strongly affected by time of ART start and associated with clinical, viral, cellular and plasma soluble markers. Furthermore, the expansion of ABCs also had a direct impact on the capacity to develop antibodies response following routine vaccination.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Vacinas , Adolescente , Humanos , Proteômica , Vacinas/uso terapêutico , Carga Viral
3.
BMC Bioinformatics ; 22(1): 422, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493215

RESUMO

BACKGROUND: With more T cell receptor sequence data becoming available, the need for bioinformatics approaches to predict T cell receptor specificity is even more pressing. Here we present SwarmTCR, a method that uses labeled sequence data to predict the specificity of T cell receptors using a nearest-neighbor approach. SwarmTCR works by optimizing the weights of the individual CDR regions to maximize classification performance. RESULTS: We compared the performance of SwarmTCR against another nearest-neighbor method and showed that SwarmTCR performs well both with bulk sequencing data and with single cell data. In addition, we show that the weights returned by SwarmTCR are biologically interpretable. CONCLUSIONS: Computationally predicting the specificity of T cell receptors can be a powerful tool to shed light on the immune response against infectious diseases and cancers, autoimmunity, cancer immunotherapy, and immunopathology. SwarmTCR is distributed freely under the terms of the GPL-3 license. The source code and all sequencing data are available at GitHub ( https://github.com/thecodingdoc/SwarmTCR ).


Assuntos
Receptores de Antígenos de Linfócitos T , Software , Análise por Conglomerados , Biologia Computacional , Imunoterapia , Receptores de Antígenos de Linfócitos T/genética
4.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184241

RESUMO

Recognition modes of individual T cell receptors (TCRs) are well studied, but factors driving the selection of TCR repertoires from primary through persistent human virus infections are less well understood. Using deep sequencing, we demonstrate a high degree of diversity of Epstein-Barr virus (EBV)-specific clonotypes in acute infectious mononucleosis (AIM). Only 9% of unique clonotypes detected in AIM persisted into convalescence; the majority (91%) of unique clonotypes detected in AIM were not detected in convalescence and were seeming replaced by equally diverse "de novo" clonotypes. The persistent clonotypes had a greater probability of being generated than nonpersistent clonotypes due to convergence recombination of multiple nucleotide sequences to encode the same amino acid sequence, as well as the use of shorter complementarity-determining regions 3 (CDR3s) with fewer nucleotide additions (i.e., sequences closer to germ line). Moreover, the two most immunodominant HLA-A2-restricted EBV epitopes, BRLF1109 and BMLF1280, show highly distinct antigen-specific public (i.e., shared between individuals) features. In fact, TCRα CDR3 motifs played a dominant role, while TCRß played a minimal role, in the selection of TCR repertoire to an immunodominant EBV epitope, BRLF1. This contrasts with the majority of previously reported repertoires, which appear to be selected either on TCRß CDR3 interactions with peptide/major histocompatibility complex (MHC) or in combination with TCRα CDR3. Understanding of how TCR-peptide-MHC complex interactions drive repertoire selection can be used to develop optimal strategies for vaccine design or generation of appropriate adoptive immunotherapies for viral infections in transplant settings or for cancer.IMPORTANCE Several lines of evidence suggest that TCRα and TCRß repertoires play a role in disease outcomes and treatment strategies during viral infections in transplant patients and in cancer and autoimmune disease therapy. Our data suggest that it is essential that we understand the basic principles of how to drive optimum repertoires for both TCR chains, α and ß. We address this important issue by characterizing the CD8 TCR repertoire to a common persistent human viral infection (EBV), which is controlled by appropriate CD8 T cell responses. The ultimate goal would be to determine if the individuals who are infected asymptomatically develop a different TCR repertoire than those that develop the immunopathology of AIM. Here, we begin by doing an in-depth characterization of both CD8 T cell TCRα and TCRß repertoires to two immunodominant EBV epitopes over the course of AIM, identifying potential factors that may be driving their selection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/genética , Epitopos Imunodominantes/genética , Complexo Principal de Histocompatibilidade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Recombinação Genética , Adolescente , Feminino , Herpesvirus Humano 4/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
5.
PLoS Pathog ; 15(11): e1008122, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765434

RESUMO

The T cell receptor (TCR) repertoire is an essential component of the CD8 T-cell immune response. Here, we seek to investigate factors that drive selection of TCR repertoires specific to the HLA-A2-restricted immunodominant epitope BRLF1109-117 (YVLDHLIVV) over the course of primary Epstein Barr virus (EBV) infection. Using single-cell paired TCRαß sequencing of tetramer sorted CD8 T cells ex vivo, we show at the clonal level that recognition of the HLA-A2-restricted BRLF1 (YVL-BR, BRLF-1109) epitope is mainly driven by the TCRα chain. For the first time, we identify a CDR3α (complementarity determining region 3 α) motif, KDTDKL, resulting from an obligate AV8.1-AJ34 pairing that was shared by all four individuals studied. This observation coupled with the fact that this public AV8.1-KDTDKL-AJ34 TCR pairs with multiple different TCRß chains within the same donor (median 4; range: 1-9), suggests that there are some unique structural features of the interaction between the YVL-BR/MHC and the AV8.1-KDTDKL-AJ34 TCR that leads to this high level of selection. Newly developed TCR motif algorithms identified a lysine at position 1 of the CDR3α motif that is highly conserved and likely important for antigen recognition. Crystal structure analysis of the YVL-BR/HLA-A2 complex revealed that the MHC-bound peptide bulges at position 4, exposing a negatively charged aspartic acid that may interact with the positively charged lysine of CDR3α. TCR cloning and site-directed mutagenesis of the CDR3α lysine ablated YVL-BR-tetramer staining and substantially reduced CD69 upregulation on TCR mutant-transduced cells following antigen-specific stimulation. Reduced activation of T cells expressing this CDR3 motif was also observed following exposure to mutated (D4A) peptide. In summary, we show that a highly public TCR repertoire to an immunodominant epitope of a common human virus is almost completely selected on the basis of CDR3α and provide a likely structural basis for the selection. These studies emphasize the importance of examining TCRα, as well as TCRß, in understanding the CD8 T cell receptor repertoire.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Regiões Determinantes de Complementaridade/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/imunologia , Proteínas Imediatamente Precoces/imunologia , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T Citotóxicos/imunologia , Transativadores/imunologia , Sequência de Aminoácidos , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/metabolismo , Epitopos de Linfócito T/imunologia , Infecções por Vírus Epstein-Barr/virologia , Antígeno HLA-A2/imunologia , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Fragmentos de Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Transativadores/genética , Transativadores/metabolismo
6.
Arch Virol ; 164(2): 473-482, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30415390

RESUMO

Macrophage (mac)-tropic human immnunodeficiency virus type 1 (HIV-1) and simian immnunodeficiency virus (SIV) in brain are associated with neurological disease. Mac-tropic HIV-1 evolves enhanced CD4 interactions that enable macrophage infection via CD4, which is in low abundance. In contrast, mac-tropic SIV is associated with CD4-independent infection via direct CCR5 binding. Recently, mac-tropic simian-human immunodeficiency virus (SHIV) from macaque brain was also reported to infect cells via CCR5 without CD4. Since SHIV envelope proteins (Envs) are derived from HIV-1, we tested more than 100 HIV-1 clade B Envs for infection of CD4-negative, CCR5+ Cf2Th/CCR5 cells. However, no infection was detected. Our data suggest that there are differences in the evolution of mac-tropism in SIV and SHIV compared to HIV-1 clade B due to enhanced interactions with CCR5 and CD4, respectively.


Assuntos
Encéfalo/virologia , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/complicações , HIV-1/metabolismo , Doenças do Sistema Nervoso/etiologia , Encéfalo/metabolismo , Antígenos CD4/genética , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-1/isolamento & purificação , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/virologia , Filogenia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
7.
AIDS ; 33(2): 211-218, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325763

RESUMO

OBJECTIVE: Timely initiation of combination antiretroviral therapy (ART) limits latent HIV reservoir size and should also limit reservoir genetic complexity. However, the relationship between these two factors remains unclear, particularly among HIV-infected youth. DESIGN: Retrospective analysis of replication-competent latent HIV clones serially isolated by limiting-dilution culture from resting CD4 T-cell reservoirs from ART-suppressed, young adult participants of a historic phase I therapeutic vaccine trial (PACTG/IMPAACT-P1059). METHODS: Replication-competent latent HIV clones isolated from resting CD4 T cells of four perinatally and 10 nonperinatally infected young adults (average 22 versus 6 years uncontrolled infection, respectively) were sequenced in Pol and Nef. Within-host HIV sequence datasets were characterized with respect to their genetic diversity and inferred immune escape mutation burden. RESULTS: Although participants were comparable in terms of sociodemographic and HIV sampling characteristics (e.g. on average, a mean 17 Pol sequences were recovered at five timepoints over up to 70 weeks) and the length of ART suppression at study entry (average 3 years), replication-competent HIV reservoir size, genetic diversity, immune escape mutation burden and variant complexity were significantly higher among the perinatally infected participants who experienced longer durations of uncontrolled viremia. Nevertheless, viral sequences inferred to retain susceptibility to host cellular immune responses were detected in all participants, irrespective of uncontrolled viremia duration. CONCLUSION: HIV elimination in late-suppressed youth may be doubly challenged by larger and more genetically complex reservoirs. Strategies that integrate host and viral genetic complexity to achieve HIV remission or cure may merit consideration in such cases.


Assuntos
Antirretrovirais/uso terapêutico , Variação Genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV/classificação , HIV/genética , Latência Viral , Adolescente , Linfócitos T CD4-Positivos/virologia , DNA Viral/química , DNA Viral/genética , Feminino , Humanos , Masculino , Estudos Retrospectivos , Análise de Sequência de DNA , Adulto Jovem , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética
8.
J Neurovirol ; 24(4): 439-453, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687407

RESUMO

Despite combined antiretroviral therapy (cART), HIV+ patients still develop neurological disorders, which may be due to persistent HIV infection and selective evolution in brain tissues. Single-molecule real-time (SMRT) sequencing technology offers an improved opportunity to study the relationship among HIV isolates in the brain and lymphoid tissues because it is capable of generating thousands of long sequence reads in a single run. Here, we used SMRT sequencing to generate ~ 50,000 high-quality full-length HIV envelope sequences (> 2200 bp) from seven autopsy tissues from an HIV+/cART+ subject, including three brain and four non-brain sites. Sanger sequencing was used for comparison with SMRT data and to clone functional pseudoviruses for in vitro tropism assays. Phylogenetic analysis demonstrated that brain-derived HIV was compartmentalized from HIV outside the brain and that the variants from each of the three brain tissues grouped independently. Variants from all peripheral tissues were intermixed on the tree but independent of the brain clades. Due to the large number of sequences, a clustering analysis at three similarity thresholds (99, 99.5, and 99.9%) was also performed. All brain sequences clustered exclusive of any non-brain sequences at all thresholds; however, frontal lobe sequences clustered independently of occipital and parietal lobes. Translated sequences revealed potentially functional differences between brain and non-brain sequences in the location of putative N-linked glycosylation sites (N-sites), V1 length, V3 charge, and the number of V4 N-sites. All brain sequences were predicted to use the CCR5 co-receptor, while most non-brain sequences were predicted to use CXCR4 co-receptor. Tropism results were confirmed by in vitro infection assays. The study is the first to use a SMRT sequencing approach to study HIV compartmentalization in tissues and supports other reports of limited trafficking between brain and non-brain sequences during cART. Due to the long sequence length, we could observe changes along the entire envelope gene, likely caused by differential selective pressure in the brain that may contribute to neurological disease.


Assuntos
Encéfalo/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Tropismo Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Adulto , Infecções por HIV/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Macrófagos/virologia , Masculino , Filogenia , Provírus/genética , Receptores CXCR4
9.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29118121

RESUMO

HIV-1 R5 variants exploit CCR5 as a coreceptor to infect both T cells and macrophages. R5 viruses that are transmitted or derived from immune tissue and peripheral blood are mainly inefficient at mediating infection of macrophages. In contrast, highly macrophage-tropic (mac-tropic) R5 viruses predominate in brain tissue and can be detected in cerebrospinal fluid but are infrequent in immune tissue or blood even in late disease. These mac-tropic R5 variants carry envelope glycoproteins (Envs) adapted to exploit low levels of CD4 on macrophages to induce infection. However, it is unclear whether this adaptation is conferred by an increased affinity of the Env trimer for CD4 or is mediated by postbinding structural rearrangements in the trimer that enhance the exposure of the coreceptor binding site and facilitate events leading to fusion and virus entry. In this study, we investigated CD4 binding to mac-tropic and non-mac-tropic Env trimers and showed that CD4-IgG binds efficiently to mac-tropic R5 Env trimers, while binding to non-mac-tropic trimers was undetectable. Our data indicated that the CD4 binding site (CD4bs) is highly occluded on Env trimers of non-mac-tropic R5 viruses. Such viruses may therefore infect T cells via viral synapses where Env and CD4 become highly concentrated. This environment will enable high-avidity interactions that overcome extremely low Env-CD4 affinities.IMPORTANCE HIV R5 variants bind to CD4 and CCR5 receptors on T cells and macrophages to initiate infection. Transmitted HIV variants infect T cells but not macrophages, and these viral strains persist in immune tissue even in late disease. Here we show that the binding site for CD4 present on HIV's envelope protein is occluded on viruses replicating in immune tissue. This occlusion likely prevents antibody binding to this site and neutralization of the virus, but it makes it difficult for virus-CD4 interactions to occur. Such viruses probably pass from T cell to T cell via cell contacts where CD4 is highly concentrated and allows infection via inefficient envelope-CD4 binding. Our data are highly relevant for vaccines that aim to induce antibodies targeting the CD4 binding site on the envelope protein.


Assuntos
Antígenos CD4/metabolismo , HIV-1/fisiologia , Macrófagos/metabolismo , Macrófagos/virologia , Receptores CCR5/metabolismo , Tropismo Viral , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Antígenos CD4/genética , Linhagem Celular , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Expressão Gênica , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Macrófagos/imunologia , Testes de Neutralização , Fragmentos de Peptídeos/imunologia , Ligação Proteica , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
10.
J Virol ; 92(2)2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29093087

RESUMO

Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time (P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence (P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection.IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Variação Genética , Genoma Viral , Herpesvirus Humano 4/genética , Biologia Computacional/métodos , Genômica/métodos , Genótipo , Herpesvirus Humano 4/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fases de Leitura Aberta , Filogenia
11.
mBio ; 8(6)2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208744

RESUMO

Fifty years after the discovery of Epstein-Barr virus (EBV), it remains unclear how primary infection with this virus leads to massive CD8 T-cell expansion and acute infectious mononucleosis (AIM) in young adults. AIM can vary greatly in severity, from a mild transient influenza-like illness to a prolonged severe syndrome. We questioned whether expansion of a unique HLA-A2.01-restricted, cross-reactive CD8 T-cell response between influenza virus A-M158 (IAV-M1) and EBV BMLF1280 (EBV-BM) could modulate the immune response to EBV and play a role in determining the severity of AIM in 32 college students. Only ex vivo total IAV-M1 and IAV-M1+EBV-BM cross-reactive tetramer+ frequencies directly correlated with AIM severity and were predictive of severe disease. Expansion of specific cross-reactive memory IAV-M1 T-cell receptor (TCR) Vß repertoires correlated with levels of disease severity. There were unique profiles of qualitatively different functional responses in the cross-reactive and EBV-specific CD8 T-cell responses in each of the three groups studied, severe-AIM patients, mild-AIM patients, and seropositive persistently EBV-infected healthy donors, that may result from differences in TCR repertoire use. IAV-M1 tetramer+ cells were functionally cross-reactive in short-term cultures, were associated with the highest disease severity in AIM, and displayed enhanced production of gamma interferon, a cytokine that greatly amplifies immune responses, thus frequently contributing to induction of immunopathology. Altogether, these data link heterologous immunity via CD8 T-cell cross-reactivity to CD8 T-cell repertoire selection, function, and resultant disease severity in a common and important human infection. In particular, it highlights for the first time a direct link between the TCR repertoire with pathogenesis and the diversity of outcomes upon pathogen encounter.IMPORTANCE The pathogenic impact of immune responses that by chance cross-react to unrelated viruses has not been established in human infections. Here, we demonstrate that the severity of acute infectious mononucleosis (AIM), an Epstein-Barr virus (EBV)-induced disease prevalent in young adults but not children, is associated with increased frequencies of T cells cross-reactive to EBV and the commonly acquired influenza A virus (IAV). The T-cell receptor (TCR) repertoire and functions of these cross-reactive T cells differed between mild- and severe-AIM patients, most likely because these two groups of patients had selected different memory TCR repertoires in response to IAV infections encountered earlier. This heterologous immunity may explain variability in disease outcome and why young adults with more-developed IAV-specific memory T-cell pools have more-severe disease than children, who have less-developed memory pools. This study provides a new framework for understanding the role of heterologous immunity in human health and disease and highlights an important developing field examining the role of T-cell repertoires in the mediation of immunopathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Mononucleose Infecciosa/imunologia , Influenza Humana/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas da Matriz Viral/imunologia , Antígenos Virais/imunologia , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Feminino , Antígeno HLA-A2/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Imunidade Heteróloga , Vírus da Influenza A/imunologia , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Receptores de Antígenos de Linfócitos T/metabolismo , Índice de Gravidade de Doença , Adulto Jovem
12.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28768859

RESUMO

Untreated HIV-positive (HIV-1+) individuals frequently suffer from HIV-associated neurocognitive disorders (HAND), with about 30% of AIDS patients suffering severe HIV-associated dementias (HADs). Antiretroviral therapy has greatly reduced the incidence of HAND and HAD. However, there is a continuing problem of milder neurocognitive impairments in treated HIV+ patients that may be increasing with long-term therapy. In the present study, we investigated whether envelope (env) genes could be amplified from proviral DNA or RNA derived from brain tissue of 12 individuals with normal neurology or minor neurological conditions (N/MC individuals). The tropism and characteristics of the brain-derived Envs were then investigated and compared to those of Envs derived from immune tissue. We showed that (i) macrophage-tropic R5 Envs could be detected in the brain tissue of 4/12 N/MC individuals, (ii) macrophage-tropic Envs in brain tissue formed compartmentalized clusters distinct from non-macrophage-tropic (non-mac-tropic) Envs recovered from the spleen or brain, (iii) the evidence was consistent with active viral expression by macrophage-tropic variants in the brain tissue of some individuals, and (iv) Envs from immune tissue of the N/MC individuals were nearly all tightly non-mac-tropic, contrasting with previous data for neuro-AIDS patients where immune tissue Envs mediated a range of macrophage infectivities, from background levels to modest infection, with a small number of Envs from some patients mediating high macrophage infection levels. In summary, the data presented here show that compartmentalized and active macrophage-tropic HIV-1 variants are present in the brain tissue of individuals before neurological disease becomes overt or serious.IMPORTANCE The detection of highly compartmentalized macrophage-tropic R5 Envs in the brain tissue of HIV patients without serious neurological disease is consistent with their emergence from a viral population already established there, perhaps from early disease. The detection of active macrophage-tropic virus expression, and probably replication, indicates that antiretroviral drugs with optimal penetration through the blood-brain barrier should be considered even for patients without neurological disease (neuro-disease). Finally, our data are consistent with the brain forming a sanctuary site for latent virus and low-level viral replication in the absence of neuro-disease.


Assuntos
Síndrome da Imunodeficiência Adquirida/virologia , Encéfalo/virologia , HIV-1/isolamento & purificação , HIV-1/fisiologia , Macrófagos/virologia , Tropismo Viral , Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Barreira Hematoencefálica , Genes env , HIV-1/genética , Humanos , Vírion/genética , Replicação Viral
14.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27733645

RESUMO

The Epstein-Barr virus (EBV) gp350 glycoprotein interacts with the cellular receptor to mediate viral entry and is thought to be the major target for neutralizing antibodies. To better understand the role of EBV-specific antibodies in the control of viral replication and the evolution of sequence diversity, we measured EBV gp350-specific antibody responses and sequenced the gp350 gene in samples obtained from individuals experiencing primary EBV infection (acute infectious mononucleosis [AIM]) and again 6 months later (during convalescence [CONV]). EBV gp350-specific IgG was detected in the sera of 17 (71%) of 24 individuals at the time of AIM and all 24 (100%) individuals during CONV; binding antibody titers increased from AIM through CONV, reaching levels equivalent to those in age-matched, chronically infected individuals. Antibody-dependent cell-mediated phagocytosis (ADCP) was rarely detected during AIM (4 of 24 individuals; 17%) but was commonly detected during CONV (19 of 24 individuals; 79%). The majority (83%) of samples taken during AIM neutralized infection of primary B cells; all samples obtained at 6 months postdiagnosis neutralized EBV infection of cultured and primary target cells. Deep sequencing revealed interpatient gp350 sequence variation but conservation of the CR2-binding site. The levels of gp350-specific neutralizing activity directly correlated with higher peripheral blood EBV DNA levels during AIM and a greater evolution of diversity in gp350 nucleotide sequences from AIM to CONV. In summary, we conclude that the viral load and EBV gp350 diversity during early infection are associated with the development of neutralizing antibody responses following AIM. IMPORTANCE: Antibodies against viral surface proteins can blunt the spread of viral infection by coating viral particles, mediating uptake by immune cells, or blocking interaction with host cell receptors, making them a desirable component of a sterilizing vaccine. The EBV surface protein gp350 is a major target for antibodies. We report the detection of EBV gp350-specific antibodies capable of neutralizing EBV infection in vitro The majority of gp350-directed vaccines focus on glycoproteins from lab-adapted strains, which may poorly reflect primary viral envelope diversity. We report some of the first primary gp350 sequences, noting that the gp350 host receptor binding site is remarkably stable across patients and time. However, changes in overall gene diversity were detectable during infection. Patients with higher peripheral blood viral loads in primary infection and greater changes in viral diversity generated more efficient antibodies. Our findings provide insight into the generation of functional antibodies, necessary for vaccine development.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , DNA Viral/genética , Herpesvirus Humano 4/genética , Imunoglobulina G/sangue , Mononucleose Infecciosa/imunologia , Glicoproteínas de Membrana/genética , Proteínas da Matriz Viral/genética , Doença Aguda , Adulto , Sequência de Aminoácidos , Linfócitos B/imunologia , Linfócitos B/virologia , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Doença Crônica , Convalescença , DNA Viral/imunologia , Variação Genética , Herpesvirus Humano 4/crescimento & desenvolvimento , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina G/classificação , Mononucleose Infecciosa/sangue , Mononucleose Infecciosa/virologia , Glicoproteínas de Membrana/imunologia , Monócitos/imunologia , Monócitos/virologia , Fagocitose , Cultura Primária de Células , Alinhamento de Sequência , Análise de Sequência de DNA , Carga Viral/genética , Carga Viral/imunologia , Proteínas da Matriz Viral/imunologia
15.
J Immunol ; 195(9): 4185-97, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416268

RESUMO

Virus-specific CD8(+) T cells expand dramatically during acute EBV infection, and their persistence is important for lifelong control of EBV-related disease. To better define the generation and maintenance of these effective CD8(+) T cell responses, we used microarrays to characterize gene expression in total and EBV-specific CD8(+) T cells isolated from the peripheral blood of 10 individuals followed from acute infectious mononucleosis (AIM) into convalescence (CONV). In total CD8(+) T cells, differential expression of genes in AIM and CONV was most pronounced among those encoding proteins important in T cell activation/differentiation, cell division/metabolism, chemokines/cytokines and receptors, signaling and transcription factors (TF), immune effector functions, and negative regulators. Within these categories, we identified 28 genes that correlated with CD8(+) T cell expansion in response to an acute EBV infection. In EBV-specific CD8(+) T cells, we identified 33 genes that were differentially expressed in AIM and CONV. Two important TF, T-bet and eomesodermin, were upregulated and maintained at similar levels in both AIM and CONV; in contrast, protein expression declined from AIM to CONV. Expression of these TF varied among cells with different epitope specificities. Collectively, gene and protein expression patterns suggest that a large proportion, if not a majority of CD8(+) T cells in AIM are virus specific, activated, dividing, and primed to exert effector activities. High expression of T-bet and eomesodermin may help to maintain effector mechanisms in activated cells and to enable proliferation and transition to earlier differentiation states in CONV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/imunologia , Mononucleose Infecciosa/imunologia , Transcriptoma , ADP-Ribosil Ciclase 1/genética , Doença Aguda , Adolescente , Adulto , Feminino , Humanos , Masculino , Receptores de Interleucina-7/genética , Fatores de Transcrição/genética
16.
J Virol ; 88(7): 3744-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429365

RESUMO

UNLABELLED: We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE: This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/virologia , Variação Genética , Herpesvirus Humano 4/genética , Orofaringe/virologia , Proteínas da Matriz Viral/genética , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Herpesvirus Humano 4/isolamento & purificação , Humanos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Fatores de Tempo , Adulto Jovem
17.
J Virol ; 86(22): 12330-40, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22951828

RESUMO

Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV(+) and EBV(-) memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV(+) memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus's potential to contribute to autoimmune disease.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/metabolismo , Memória Imunológica , Anticorpos/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/virologia , DNA Complementar/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Vetores Genéticos , Células HEK293 , Humanos , Leucócitos Mononucleares/virologia , Risco , Análise de Sequência de DNA , Proteínas da Matriz Viral/metabolismo
18.
J Virol ; 85(5): 2397-405, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159865

RESUMO

The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. Here, we describe a single amino acid determinant in the V1 loop that also modulates macrophage tropism. Thus, we identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, we show that a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection.


Assuntos
Antígenos CD4/imunologia , Sequência Conservada , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Macrófagos/imunologia , Sequência de Aminoácidos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/virologia , HIV-1/química , HIV-1/genética , HIV-1/imunologia , Células HeLa , Humanos , Macrófagos/virologia , Dados de Sequência Molecular , Alinhamento de Sequência
19.
J Immunol ; 185(11): 6753-64, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21048112

RESUMO

Memory T cells cross-reactive with epitopes encoded by related or even unrelated viruses may alter the immune response and pathogenesis of infection by a process known as heterologous immunity. Because a challenge virus epitope may react with only a subset of the T cell repertoire in a cross-reactive epitope-specific memory pool, the vigorous cross-reactive response may be narrowly focused, or oligoclonal. We show in this article, by examining human T cell cross-reactivity between the HLA-A2-restricted influenza A virus-encoded M1(58-66) epitope (GILGFVFTL) and the dissimilar Epstein-Barr virus-encoded BMLF1(280-288) epitope (GLCTLVAML), that, under some conditions, heterologous immunity can lead to a significant broadening, rather than a narrowing, of the TCR repertoire. We suggest that dissimilar cross-reactive epitopes might generate a broad, rather than a narrow, T cell repertoire if there is a lack of dominant high-affinity clones; this hypothesis is supported by computer simulation.


Assuntos
Epitopos de Linfócito T/metabolismo , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/metabolismo , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Adolescente , Adulto , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Células Clonais , Reações Cruzadas , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Humanos , Epitopos Imunodominantes/metabolismo , Pessoa de Meia-Idade , Oligopeptídeos/imunologia , Oligopeptídeos/metabolismo , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/metabolismo , Adulto Jovem
20.
PLoS One ; 5(9): e12926, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886079

RESUMO

BACKGROUND: Programmed Death-1 (PD-1) is an inhibitory member of the CD28 family of molecules expressed on CD8+ T cells in response to antigenic stimulation. To better understand the role of PD-1 in antiviral immunity we examined the expression of PD-1 on Epstein-Barr virus (EBV) epitope-specific CD8+ T cells during acute infectious mononucleosis (AIM) and convalescence. METHODOLOGY/PRINCIPAL FINDINGS: Using flow cytometry, we observed higher frequencies of EBV-specific CD8+ T cells and higher intensity of PD-1 expression on EBV-specific CD8+ T cells during AIM than during convalescence. PD-1 expression during AIM directly correlated with viral load and with the subsequent degree of CD8+ T cell contraction in convalescence. Consistent differences in PD-1 expression were observed between CD8+ T cells with specificity for two different EBV lytic antigen epitopes. Similar differences were observed in the degree to which PD-1 was upregulated on these epitope-specific CD8+ T cells following peptide stimulation in vitro. EBV epitope-specific CD8+ T cell proliferative responses to peptide stimulation were diminished during AIM regardless of PD-1 expression and were unaffected by blocking PD-1 interactions with PD-L1. Significant variability in PD-1 expression was observed on EBV epitope-specific CD8+ T cell subsets defined by V-beta usage. CONCLUSIONS/SIGNIFICANCE: These observations suggest that PD-1 expression is not only dependent on the degree of antigen presentation, but also on undefined characteristics of the responding cell that segregate with epitope specificity and V-beta usage.


Assuntos
Antígenos CD/genética , Proteínas Reguladoras de Apoptose/genética , Linfócitos T CD8-Positivos/imunologia , Herpesvirus Humano 4/fisiologia , Mononucleose Infecciosa/genética , Mononucleose Infecciosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Antígenos CD/imunologia , Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Expressão Gênica , Herpesvirus Humano 4/imunologia , Humanos , Mononucleose Infecciosa/virologia , Receptor de Morte Celular Programada 1 , Receptores de Antígenos de Linfócitos T/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA