Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Acad Radiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969576

RESUMO

RATIONALE AND OBJECTIVES: To assess the feasibility and efficacy of a deep learning-based three-dimensional (3D) super-resolution diffusion-weighted imaging (DWI) radiomics model in predicting the prognosis of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids. METHODS: This retrospective study included 360 patients with uterine fibroids who received HIFU treatment, including Center A (training set: N = 240; internal testing set: N = 60) and Center B (external testing set: N = 60) and were classified as having a favorable or unfavorable prognosis based on the postoperative non-perfusion volume ratio. A deep transfer learning approach was used to construct super-resolution DWI (SR-DWI) based on conventional high-resolution DWI (HR-DWI), and 1198 radiomics features were extracted from manually segmented regions of interest in both image types. Following data preprocessing and feature selection, radiomics models were constructed for HR-DWI and SR-DWI using Support Vector Machine (SVM), Random Forest (RF), and Light Gradient Boosting Machine (LightGBM) algorithms, with performance evaluated using area under the curve (AUC) and decision curves. RESULT: All DWI radiomics models demonstrated superior AUC in predicting HIFU ablated uterine fibroids prognosis compared to expert radiologists (AUC: 0.706, 95% CI: 0.647-0.748). When utilizing different machine learning algorithms, the HR-DWI model achieved AUC values of 0.805 (95% CI: 0.679-0.931) with SVM, 0.797 (95% CI: 0.672-0.921) with RF, and 0.770 (95% CI: 0.631-0.908) with LightGBM. Meanwhile, the SR-DWI model outperformed the HR-DWI model (P < 0.05) across all algorithms, with AUC values of 0.868 (95% CI: 0.775-0.960) with SVM, 0.824 (95% CI: 0.715-0.934) with RF, and 0.821 (95% CI: 0.709-0.933) with LightGBM. And decision curve analysis further confirmed the good clinical value of the models. CONCLUSION: Deep learning-based 3D SR-DWI radiomics model demonstrated favorable feasibility and effectiveness in predicting the prognosis of HIFU ablated uterine fibroids, which was superior to HR-DWI model and assessment by expert radiologists.

2.
Front Physiol ; 15: 1394431, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854630

RESUMO

Objective: To evaluate the effectiveness of 3D NerveVIEW sequence with gadolinium contrast on the visualization of pelvic nerves and their branches compared to that without contrast. Methods: Participants were scanned twice using 3D NerveVIEW sequence with and without gadolinium contrast to acquire pelvic nerve images. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and contrast ratio of the nerves were calculated and compared to determine the quality of images. To subjectively assess, using a 3-point scale, branch nerves critical to therapeutic decision-making, including the pelvic splanchnic nerve and pelvic plexus, the superior gluteal nerve, and the pudendal nerve. Results: In the 32 eligible participants after using contrast, the CNRs of the images of nerve-to-bone and nerve-to-vessel significantly increased (p < 0.05). The CR of the images with contrast of all nerve-to-surrounding tissues (i.e., bone, muscle, blood vessels, and fat) were also found significantly higher (p < 0.05). The assessment of observers also shows higher scores for images with contrast compared to images without contrast. Conclusion: The 3D NerveVIEW sequence combined with gadolinium contrast improved vascular suppression, increased the contrast between pelvic nerves and surrounding tissue, and enhanced the visualization of nerves and their branches. This study may be helpful for the technically challenging preoperative planning of pelvic diseases surgery.

3.
Quant Imaging Med Surg ; 14(6): 3851-3862, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846274

RESUMO

Background: The diagnosis of early-stage cervical cancer through conventional magnetic resonance imaging (MRI) remains challenging, highlighting a greater need for pelvic high-resolution MRI (HR MRI). This study used our research team's endovaginal coil imaging to optimize scanning parameters and aimed to achieve HR MRI of the pelvis and determine its clinical value. Methods: Fifty participants were recruited prospectively for this cross-sectional study conducted at the First Affiliated Hospital of Chongqing Medical University from January 2023 to November 2023. Initially, 10 volunteers requiring pelvic imaging diagnosis underwent pelvic MRI with the endovaginal coil combined with a conventional external array coil to test and optimize the scanning parameters. Subsequently, 40 patients who were highly suspected or diagnosed with cervical cancer were randomly assigned to undergo an initial pelvic scan with an external array coil with subsequent examinations of both the conventional coil and the endovaginal coil. Two experienced radiologists performed quantitative analyses, measuring signals and calculating the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and contrast (C). They also conducted qualitative analyses, evaluating imaging artifacts, anatomical structures, and overall image quality. The paired sample t-test and Wilcoxon rank-sum test were conducted to compare the statistical differences between the two sets of images, while the intraclass correlation coefficient (ICC) and Kappa consistency tests were used to assess the measurement and scoring consistency between the two radiologists. Results: The optimized endovaginal images had higher mean SNR, CNR, and C values (18.62±7.85, 16.04±7.72, and 0.73±0.11, respectively) compared to the conventional images (6.77±2.36, 4.47±2.05, and 0.47±0.12, respectively). Additionally, the ratings for imaging artifacts, anatomical structures, and overall quality of the endovaginal images were all 4 [interquartile range (IQR) 4, 4]; meanwhile, the conventional images scored lower with ratings of 4 (IQR 3, 4), 3 (IQR 3, 3), and 3 (IQR 3, 3) for SNR, CNR, and C, respectively. All analysis results underwent paired-sample t-tests or Wilcoxon rank-sum tests between the two groups, yielding a P value <0.001. The optimized endovaginal images also showed improved resolution with a reconstructed voxel size of 0.11 mm3, and HR MRI was successfully achieved. The ICC values for the measurements were 0.914, 0.947, and 0.912, respectively, and for the ratings, the measurement was 0.923, indicating excellent consistency between the two physicians (ICC/Kappa value between 0.85 and 1.00). Conclusions: Endovaginal technology, which provides precise clinical information for the diagnosis of cervical cancer, provides straightforward operation and exceptional imaging quality, making it highly suitable for expanded clinical use.

4.
Eur J Radiol ; 177: 111556, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875748

RESUMO

PURPOSE: To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy of this fusion model against the assessments made by experienced radiologists. MATERIALS AND METHODS: This multi-center study conducted a retrospective analysis of DCE-MRI images from 330 women diagnosed with breast cancer, with 138 cases categorized as benign and 192 as malignant. The training and internal testing sets comprised 270 patients from center 1, while the external testing cohort consisted of 60 patients from center 2. A fusion feature set consisting of radiomics features and deep transfer learning features was constructed from both intratumoral (ITR) and peritumoral (PTR) areas. The Least absolute shrinkage and selection operator (LASSO) based support vector machine was chosen as the classifier by comparing its performance with five other machine learning models. The diagnostic performance and clinical usefulness of fusion model were verified and assessed through the area under the receiver operating characteristics (ROC) and decision curve analysis. Additionally, the performance of the fusion model was compared with the diagnostic assessments of two experienced radiologists to evaluate its relative accuracy. The study strictly adhered to CLEAR and METRICS guidelines for standardization to ensure rigorous and reproducible methods. RESULTS: The findings show that the fusion model, utilizing radiomics and deep transfer learning features from the ITR and PTR, exhibited exceptional performance in classifying breast tumors, achieving AUCs of 0.950 in the internal testing set and 0.921 in the external testing set. This performance significantly surpasses that of models relying on singular regional radiomics or deep transfer learning features alone. Moreover, the fusion model demonstrated superior diagnostic accuracy compared to the evaluations conducted by two experienced radiologists, thereby highlighting its potential to support and enhance clinical decision-making in the differentiation of benign and malignant breast tumors. CONCLUSION: The fusion model, combining multi-regional radiomics with deep transfer learning features, not only accurately differentiates between benign and malignant breast tumors but also outperforms the diagnostic assessments made by experienced radiologists. This underscores the model's potential as a valuable tool for improving the accuracy and reliability of breast tumor diagnosis.

5.
Cancer Imaging ; 24(1): 76, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886780

RESUMO

BACKGROUND: A standard surgical procedure for patients with small early-stage lung adenocarcinomas remains unknown. Hence, we aim in this study to assess the clinical utility of the consolidation-to-tumor ratio (CTR) when treating patients with small (2 cm) early stage lung cancers. METHODS: A retrospective cohort of 298 sublobar resection and 266 lobar resection recipients for early stage lung adenocarcinoma ≤ 2 cm was assembled from the First Affiliated Hospital of Chongqing Medical University between 2016 and 2019. To compare survival rates among the different groups, Kaplan-Meier curves were calculated, and the log-rank test was used. A multivariate Cox proportional hazard model was constructed utilizing variables that were significant in univariate analysis of survival. RESULTS: In the study, 564 patients were included, with 298 patients (52.8%) undergoing sublobar resection and 266 patients (47.2%) undergoing lobar resection. Regarding survival results, there was no significant difference in the 5-year overall survival (OS, P = 0.674) and 5-year recurrence-free survival (RFS, P = 0.253) between the two groups. Cox regression analyses showed that CTR ≥ 0.75(P < 0.001), age > 56 years (P = 0.007), and sublobar resection(P = 0.001) could predict worse survival. After examining survival results based on CTR categorization, we segmented the individuals into three categories: CTR<0.7, 0.7 ≤ CTR<1, and CTR = 1.The lobar resection groups had more favorable clinical outcomes than the sublobar resection groups in both the 0.7 ≤ CTR < 1(RFS: P < 0.001, OS: P = 0.001) and CTR = 1(RFS: P = 0.001, OS: P = 0.125). However, for patients with 0 ≤ CTR < 0.7, no difference in either RFS or OS was found between the lobar resection and sublobar resection groups, all of which had no positive events. Patients with a CTR between 0.7 and 1 who underwent lobar resection had similar 5-year RFS and OS rates compared to those with a CTR between 0 and 0.7 who underwent sublobar resection (100% vs. 100%). Nevertheless, a CTR of 1 following lobar resection resulted in notably reduced RFS and OS when compared to a CTR between 0.7 and 1 following lobar resection (P = 0.005 and P = 0.016, respectively). CONCLUSION: Lobar resection is associated with better long-term survival outcomes than sublobar resection for small lung adenocarcinomas ≤ 2 cm and CTR ≥ 0.7.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Pneumonectomia , Humanos , Masculino , Feminino , Estudos Retrospectivos , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Idoso , Adenocarcinoma de Pulmão/cirurgia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/mortalidade , Pneumonectomia/métodos , Taxa de Sobrevida , Prognóstico
6.
Insights Imaging ; 15(1): 121, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38763985

RESUMO

OBJECTIVES: To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS: In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS: From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION: The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT: In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS: The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.

7.
Quant Imaging Med Surg ; 14(5): 3366-3380, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38720835

RESUMO

Background: The threshold value of consolidation-to-tumor ratio (CTR) for distinguishing between ground-glass opacity (GGO)-predominant and solid-predominant ground-glass nodules (GGNs) needs to be clarified, as the lack of clarity has caused the prognostic implications to remain ambiguous. This study aimed to determine the threshold value of CTR for distinguishing between GGO-predominant GGNs and solid-predominant GGNs and elucidate the prognostic implications of the solid-predominant GGNs categorized by CTR on c-stage IA lung adenocarcinoma. Methods: Between January 2016 and October 2018, 764 c-stage IA lung adenocarcinoma cases were assembled from the First Affiliated Hospital of Chongqing Medical University. Of the 764 lesions, 515 (67.4%) were nodules with a GGO component, and 249 (32.6%) were solid nodules (SNs) on thin-section computed tomography (CT). We evaluated the correlation of the 3-dimensional (3D) consolidation component volume ratio with CTR based on the coefficient of determination, r. After receiver operating characteristic (ROC) analysis of 515 GGNs, we defined the nodule with CTR >0.750 as solid-predominant GGN and the nodule with CTR ≤0.750 as GGO-predominant GGN. Subsequently, the prognosis of 439 patients who had follow-up registration was evaluated. Survival curves were calculated using the Kaplan-Meier method, and the log-rank test was employed to compare survival rates among different groups. Cox proportional hazard regression models were applied to evaluate the independent risk factors for recurrence-free survival (RFS). Results: Among 764 patients, 515 (67.4%) were nodules with a GGO component, and 249 (32.6%) were SNs on thin-section CT. For 515 GGNs, the 3D consolidation component volume ratio correlated well with CTR (r=0.888). CTR tended to be slightly larger than the 3D consolidation component volume ratio. A 3D consolidation component volume ratio >50% was best predicted by CTR >0.750, followed by CTR >0.549. CTR >0.750 and CTR >0.549 predicted 3D consolidation component volume ratio >50% with 85% and 99.2% sensitivity and 91.6% and 57.2% specificity, respectively. The 5-year RFS and overall survival (OS) of patients with 0.750< CTR <1 were worse than those of patients with 0≤ CTR ≤0.750 (P<0.001 and P<0.001, respectively) but better than those of patients with CTR =1 (P=0.002 and P=0.03, respectively). Carcinoembryonic antigen (CEA) >2.1 [hazard ratio (HR) =12.516, 95% confidence interval (CI): 1.729-90.598], CTR >0.750 (HR =13.934, 95% CI: 3.341-58.123), larger consolidation component size with diameter more than 20 mm (HR =1.855, 95% CI: 1.242-2.770), poorly differentiated (HR =1.622, 95% CI: 1.056-2.491), lymph node metastasis (HR =2.473, 95% CI: 1.601-3.821), and sublobar resection (HR =2.596, 95% CI: 1.701-3.962) could predict the poor prognosis. Patients with 0≤ CTR ≤0.750 receiving sublobar resection had prognoses comparable to those receiving lobar resection, whether the tumor size ≤2 cm or consolidation component size ≤3 cm. Lobar resection was superior to sublobar resection for non-small cell lung cancer (NSCLC) ≤2 cm with CTR >0.750. Conclusions: Compared to CTR =0.5, the 2-dimensional (2D) CTR =0.750 found using the 3D consolidation component volume ratio as the gold standard better differentiated between solid-predominant GGNs and GGO-predominant GGNs. CTR >0.750 was an independent risk factor associated with the poor prognosis of patients with c-stage IA lung adenocarcinoma. Sublobar resection should be cautiously adopted in GGNs with 0.750< CTR ≤1.

8.
Acad Radiol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38806374

RESUMO

RATIONALE AND OBJECTIVES: We examined the effectiveness of computed tomography (CT)-based deep learning (DL) models in differentiating benign and malignant solid pulmonary nodules (SPNs) ≤ 8 mm. MATERIALS AND METHODS: The study patients (n = 719) were divided into internal training, internal validation, and external validation cohorts; all had small SPNs and had undergone preoperative chest CTs and surgical resection. We developed five DL models incorporating features of the nodule and five different peri-nodular regions with the Multiscale Dual Attention Network (MDANet) to differentiate benign and malignant SPNs. We selected the best-performing model, which was then compared to four conventional algorithms (VGG19, ResNet50, ResNeXt50, and DenseNet121). Furthermore, another five DL models were constructed using MDANet to distinguish benign tumors from inflammatory nodules and the one performed best was selected out. RESULTS: Model 4, which incorporated the nodule and 15 mm peri-nodular region, best differentiated benign and malignant SPNs. The model had an area under the curve (AUC), accuracy, recall, precision, and F1-score of 0.730, 0.724, 0.711, 0.705, and 0.707 in the external validation cohort. Model 4 also performed better than the other four conventional algorithms. Model 8, which incorporated the nodule and 10 mm peri-nodular region, was the best model for distinguishing benign tumors from inflammatory nodules. The model had an AUC, accuracy, recall, precision, and F1-score of 0.871, 0.938, 0.863, 0.904, and 0.882 in the external validation cohort. CONCLUSION: The study concludes that CT-based DL models built with MDANet can accurately discriminate among small benign and malignant SPNs, benign tumors and inflammatory nodules.

9.
Acad Radiol ; 31(7): 2848-2858, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704283

RESUMO

RATIONALE AND OBJECTIVES: To investigate whether the quantitative index of signal intensity (SI) heterogeneity on T2-weighted (T2W) magnetic resonance images can predict the difficulty and efficacy of high-intensity focused ultrasound (HIFU) ablation for uterine fibroids. MATERIALS AND METHODS: The standard deviation (SD) of T2W image (T2WI) SI was used to quantify SI heterogeneity. The correlation between SD and the non-perfused volume ratio (NPVR) in 575 patients undergoing HIFU treatment was retrospectively analyzed, and the efficacy of SD in predicting NPVR was discussed. Three classifications were made based on the SD, and the ablation difficulty and ablation effect of different grades were compared. A total of 65 cases from another center were used as an external validation set to verify the classification performance of SD. RESULTS: The SD of SI was negatively correlated with NPVR (r = -0.460, p < 0.001). The predictive efficiency of SD for the ablation effect was higher than that of the scaled signal intensity (0.767 vs. 0.701, p = 0.006). Univariate and multivariate logistic regression analyses showed that SD was an independent predictor of ablation effect. Based on SD, the three classifications were divided into SD I: SD < 101.0, SD II: 101.0 ≤ SD < 138.7, and SD III: SD≥ 138.7. The treatment time, sonication time, treatment intensity, and total energy of SD I were lower than those of SD II and III (p < 0.05). CONCLUSION: The heterogeneity of T2WI SI of uterine fibroids is negatively correlated with NPVR. The SD of SI can be used to predict the ablation difficulty and ablation effect of HIFU.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Leiomioma , Imageamento por Ressonância Magnética , Neoplasias Uterinas , Humanos , Feminino , Leiomioma/diagnóstico por imagem , Leiomioma/terapia , Leiomioma/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/terapia , Neoplasias Uterinas/cirurgia , Adulto , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Pessoa de Meia-Idade , Resultado do Tratamento , Valor Preditivo dos Testes
10.
Cancer Imaging ; 24(1): 47, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566150

RESUMO

PURPOSE: To investigate the computed tomography (CT) characteristics of air-containing space and its specific patterns in neoplastic and non-neoplastic ground glass nodules (GGNs) for clarifying their significance in differential diagnosis. MATERIALS AND METHODS: From January 2015 to October 2022, 1328 patients with 1,350 neoplastic GGNs and 462 patients with 465 non-neoplastic GGNs were retrospectively enrolled. Their clinical and CT data were analyzed and compared with emphasis on revealing the differences of air-containing space and its specific patterns (air bronchogram and bubble-like lucency [BLL]) between neoplastic and non-neoplastic GGNs and their significance in differentiating them. RESULTS: Compared with patients with non-neoplastic GGNs, female was more common (P < 0.001) and lesions were larger (P < 0.001) in those with neoplastic ones. Air bronchogram (30.1% vs. 17.2%), and BLL (13.0% vs. 2.6%) were all more frequent in neoplastic GGNs than in non-neoplastic ones (each P < 0.001), and the BLL had the highest specificity (93.6%) in differentiation. Among neoplastic GGNs, the BLL was more frequently detected in the larger (14.9 ± 6.0 mm vs. 11.4 ± 4.9 mm, P < 0.001) and part-solid (15.3% vs. 10.7%, P = 0.011) ones, and its incidence significantly increased along with the invasiveness (9.5-18.0%, P = 0.001), whereas no significant correlation was observed between the occurrence of BLL and lesion size, attenuation, or invasiveness. CONCLUSION: The air containing space and its specific patterns are of great value in differentiating GGNs, while BLL is a more specific and independent sign of neoplasms.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Feminino , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Tomografia Computadorizada por Raios X/métodos , Diagnóstico Diferencial
11.
Radiol Med ; 129(5): 776-784, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512613

RESUMO

PURPOSE: To investigate the value of a computed tomography (CT)-based deep learning (DL) model to predict the presence of micropapillary or solid (M/S) growth pattern in invasive lung adenocarcinoma (ILADC). MATERIALS AND METHODS: From June 2019 to October 2022, 617 patients with ILADC who underwent preoperative chest CT scans in our institution were randomly placed into training and internal validation sets in a 4:1 ratio, and 353 patients with ILADC from another institution were included as an external validation set. Then, a self-paced learning (SPL) 3D Net was used to establish two DL models: model 1 was used to predict the M/S growth pattern in ILADC, and model 2 was used to predict that pattern in ≤ 2-cm-diameter ILADC. RESULTS: For model 1, the training cohort's area under the curve (AUC), accuracy, recall, precision, and F1-score were 0.924, 0.845, 0.851, 0.842, and 0.843; the internal validation cohort's were 0.807, 0.744, 0.756, 0.750, and 0.743; and the external validation cohort's were 0.857, 0.805, 0.804, 0.806, and 0.804, respectively. For model 2, the training cohort's AUC, accuracy, recall, precision, and F1-score were 0.946, 0.858, 0.881,0.844, and 0.851; the internal validation cohort's were 0.869, 0.809, 0.786, 0.794, and 0.790; and the external validation cohort's were 0.831, 0.792, 0.789, 0.790, and 0.790, respectively. The SPL 3D Net model performed better than the ResNet34, ResNet50, ResNeXt50, and DenseNet121 models. CONCLUSION: The CT-based DL model performed well as a noninvasive screening tool capable of reliably detecting and distinguishing the subtypes of ILADC, even in small-sized tumors.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Neoplasias Pulmonares , Tomografia Computadorizada por Raios X , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Redes Neurais de Computação , Invasividade Neoplásica , Imageamento Tridimensional/métodos , Valor Preditivo dos Testes
12.
Radiol Med ; 129(5): 737-750, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38512625

RESUMO

PURPOSE: Breast cancer's impact necessitates refined diagnostic approaches. This study develops a nomogram using radiology quantitative features from contrast-enhanced cone-beam breast CT for accurate preoperative classification of benign and malignant breast tumors. MATERIAL AND METHODS: A retrospective study enrolled 234 females with breast tumors, split into training and test sets. Contrast-enhanced cone-beam breast CT-images were acquired using Koning Breast CT-1000. Quantitative assessment features were extracted via 3D-slicer software, identifying independent predictors. The nomogram was constructed to preoperative differentiation benign and malignant breast tumors. Calibration curve was used to assess whether the model showed favorable correspondence with pathological confirmation. Decision curve analysis confirmed the model's superiority. RESULTS: The study enrolled 234 female patients with a mean age of 50.2 years (SD ± 9.2). The training set had 164 patients (89 benign, 75 malignant), and the test set had 70 patients (29 benign, 41 malignant). The nomogram achieved excellent predictive performance in distinguishing benign and malignant breast lesions with an AUC of 0.940 (95% CI 0.900-0.940) in the training set and 0.970 (95% CI 0.940-0.970) in the test set. CONCLUSION: This study illustrates the effectiveness of quantitative radiology features derived from contrast-enhanced cone-beam breast CT in distinguishing between benign and malignant breast tumors. Incorporating these features into a nomogram-based diagnostic model allows for breast tumor diagnoses that are objective and possess good accuracy. The application of these insights could substantially increase reliability and efficacy in the management of breast tumors, offering enhanced diagnostic capability.


Assuntos
Neoplasias da Mama , Tomografia Computadorizada de Feixe Cônico , Meios de Contraste , Nomogramas , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Pessoa de Meia-Idade , Tomografia Computadorizada de Feixe Cônico/métodos , Estudos Retrospectivos , Diagnóstico Diferencial , Adulto , Idoso
13.
Quant Imaging Med Surg ; 14(2): 1971-1984, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415120

RESUMO

Background: The solid component of subsolid nodules (SSNs) is closely associated with the invasiveness of lung adenocarcinoma, and its accurate assessment is crucial for selecting treatment method. Therefore, this study aimed to evaluate the accuracy of solid component size within SSNs measured on multiplanar volume rendering (MPVR) and compare it with the dimensions of invasive components on pathology. Methods: A pilot study was conducted using a chest phantom to determine the optimal MPVR threshold for the solid component within SSN, and then clinical validation was carried out by retrospective inclusion of patients with pathologically confirmed solitary SSN from October 2020 to October 2021. The radiological tumor size on MPVR and solid component size on MPVR (RSSm) and on lung window (RSSl) were measured. The size of the tumor and invasion were measured on the pathological section, and the invasion, fibrosis, and inflammation within SSNs were also recorded. The measurement difference between computed tomography (CT) and pathology, inter-observer and inter-measurement agreement were analyzed. Receiver operating characteristic (ROC) analysis and Bland-Altman plot were performed to evaluate the diagnostic efficiency of MPVR. Results: A total of 142 patients (mean age, 54±11 years, 39 men) were retrospectively enrolled in the clinical study, with 26 adenocarcinomas in situ, 92 minimally invasive adenocarcinomas (MIAs), and 24 invasive adenocarcinomas (IAs). The RSSl was significantly smaller than pathological invasion size with fair inter-measurement agreement [intraclass correlation coefficient (ICC) =0.562, P<0.001] and moderate interobserver agreement (ICC =0.761, P<0.001). The RSSm was significantly larger than pathological invasion size with the excellent inter-measurement agreement (ICC =0.829, P<0.001) and excellent (ICC =0.952, P<0.001) interobserver agreement. ROC analysis showed that the cutoff value of RSSm for differentiating adenocarcinoma in situ from MIA and MIA from IA was 1.85 and 6.45 mm (sensitivity: 93.8% and 95.5%, specificity: 85.7% and 88.2%, 95% confidence internal: 0.914-0.993 and 0.900-0.983), respectively. The positive predictive value-and negative predictive value of MPVR in predicting invasiveness were 92.8% and 100%, respectively. Conclusions: Using MPVR to predict the invasive degree of SSN had high accuracy and good inter-observer agreement, which is superior to lung window measurements and helpful for clinical decision-making.

14.
Quant Imaging Med Surg ; 14(2): 1873-1890, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415143

RESUMO

Background: Four-dimensional flow magnetic resonance imaging (4D flow MRI) is a promising new technology with potential clinical value in hemodynamic quantification. Although an increasing number of articles on 4D flow MRI have been published over the past decades, few studies have statistically analyzed these published articles. In this study, we aimed to perform a systematic and comprehensive bibliometric analysis of 4D flow MRI to explore the current hotspots and potential future directions. Methods: The Web of Science Core Collection searched for literature on 4D flow MRI between 2003 and 2022. CiteSpace was utilized to analyze the literature data, including co-citation, cooperative network, cluster, and burst keyword analysis. Results: A total of 1,069 articles were extracted for this study. The main research hotspots included the following: quantification and visualization of blood flow in different clinical settings, with keywords such as "cerebral aneurysm", "heart", "great vessel", "tetralogy of Fallot", "portal hypertension", and "stiffness"; optimization of image acquisition schemes, such as "resolution" and "reconstruction"; measurement and analysis of flow components and patterns, as indicated by keywords "pattern", "KE", "WSS", and "fluid dynamics". In addition, international consensus for metrics derived from 4D flow MRI and multimodality imaging may also be the future research direction. Conclusions: The global domain of 4D flow MRI has grown over the last 2 decades. In the future, 4D flow MRI will evolve towards becoming a relatively short scan duration with adequate spatiotemporal resolution, expansion into the diagnosis and treatment of vascular disease in other related organs, and a shift in focus from vascular structure to function. In addition, artificial intelligence (AI) will assist in the clinical promotion and application of 4D flow MRI.

15.
Heliyon ; 10(2): e24878, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304824

RESUMO

Objective: This study aimed to develop a nomogram combining CT-based handcrafted radiomics and deep learning (DL) features to preoperatively predict muscle invasion in bladder cancer (BCa) with multi-center validation. Methods: In this retrospective study, 323 patients underwent radical cystectomy with pathologically confirmed BCa were enrolled and randomly divided into the training cohort (n = 226) and internal validation cohort (n = 97). And fifty-two patients from another independent medical center were enrolled as an independent external validation cohort. Handcrafted radiomics and DL features were constructed from preoperative nephrographic phase CT images. Least absolute shrinkage and selection operator (LASSO) regression was used to identify the most discriminative features in train cohort. Multivariate logistic regression was used to develop the predictive model and a deep learning radiomics nomogram (DLRN) was constructed. The predictive performance of models was evaluated by area under the curves (AUC) in the three cohorts. The calibration and clinical usefulness of DLRN were estimated by calibration curve and decision curve analysis. Results: The nomogram that incorporated radiomics signature and DL signature demonstrated satisfactory predictive performance for differentiating non-muscle invasive bladder cancer (NMIBC) from muscle invasive bladder cancer (MIBC), with an AUC of 0.884 (95 % CI: 0.813-0.953) in internal validation cohort and 0.862 (95 % CI: 0.756-0.968) in external validation cohort, respectively. Decision curve analysis confirmed the clinical usefulness of the nomogram. Conclusions: A CT-based deep learning radiomics nomogram exhibited a promising performance for preoperative prediction of muscle invasion in bladder cancer, and may be helpful in the clinical decision-making process.

16.
Int J Surg ; 110(5): 2922-2932, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349205

RESUMO

BACKGROUND: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning (DL) algorithms may be useful for treatment decision-making and follow-up management. This study was aimed to develop and validate a DL model based on preoperative computed tomography (CT) for predicting postcystectomy overall survival (OS) in patients with MIBC. METHODS: MIBC patients who underwent RC were retrospectively included from four centers, and divided into the training, internal validation, and external validation sets. A DL model incorporated the convolutional block attention module (CBAM) was built for predicting OS using preoperative CT images. The authors assessed the prognostic accuracy of the DL model and compared it with classic handcrafted radiomics model and clinical model. Then, a deep learning radiomics nomogram (DLRN) was developed by combining clinicopathological factors, radiomics score (Rad-score) and deep learning score (DL-score). Model performance was assessed by C-index, KM curve, and time-dependent ROC curve. RESULTS: A total of 405 patients with MIBC were included in this study. The DL-score achieved a much higher C-index than Rad-score and clinical model (0.690 vs. 0.652 vs. 0.618 in the internal validation set, and 0.658 vs. 0.601 vs. 0.610 in the external validation set). After adjusting for clinicopathologic variables, the DL-score was identified as a significantly independent risk factor for OS by the multivariate Cox regression analysis in all sets (all P <0.01). The DLRN further improved the performance, with a C-index of 0.713 (95% CI: 0.627-0.798) in the internal validation set and 0.685 (95% CI: 0.586-0.765) in external validation set, respectively. CONCLUSIONS: A DL model based on preoperative CT can predict survival outcome of patients with MIBC, which may help in risk stratification and guide treatment decision-making and follow-up management.


Assuntos
Cistectomia , Aprendizado Profundo , Tomografia Computadorizada por Raios X , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Estudos Retrospectivos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Nomogramas
17.
Cancer Imaging ; 24(1): 15, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254185

RESUMO

BACKGROUND: To compare the diagnostic performance of Lung-RADS (lung imaging-reporting and data system) 2022 and PNI-GARS (pulmonary node imaging-grading and reporting system). METHODS: Pulmonary nodules (PNs) were selected at four centers, namely, CQ Center (January 1, 2018-December 31, 2021), HB Center (January 1, 2021-June 30, 2022), SC Center (September 1, 2021-December 31, 2021), and SX Center (January 1, 2021-December 31, 2021). PNs were divided into solid nodules (SNs), partial solid nodules (PSNs) and ground-glass nodules (GGNs), and they were then classified by the Lung-RADS and PNI-GARS. The sensitivity, specificity and agreement rate were compared between the two systems by the χ2 test. RESULTS: For SN and PSN, the sensitivity of PNI-GARS and Lung-RADS was close (SN 99.8% vs. 99.4%, P < 0.001; PSN 99.9% vs. 98.4%, P = 0.015), but the specificity (SN 51.2% > 35.1%, PSN 13.3% > 5.7%, all P < 0.001) and agreement rate (SN 81.1% > 74.5%, P < 0.001, PSN 94.6% > 92.7%, all P < 0.05) of PNI-GARS were superior to those of Lung-RADS. For GGN, the sensitivity (96.5%) and agreement rate (88.6%) of PNI-GARS were better than those of Lung-RADS (0, 18.5%, P < 0.001). For the whole sample, the sensitivity (98.5%) and agreement rate (87.0%) of PNI-GARS were better than Lung-RADS (57.5%, 56.5%, all P < 0.001), whereas the specificity was slightly lower (49.8% < 53.4%, P = 0.003). CONCLUSION: PNI-GARS was superior to Lung-RADS in diagnostic performance, especially for GGN.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , China
18.
Quant Imaging Med Surg ; 14(1): 179-193, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223045

RESUMO

Background: The application of high-intensity focused ultrasound (HIFU) in the treatment of uterine fibroids is becoming increasingly widespread, and postoperative collateral thermal damage to adjacent tissue has become a prominent subject of discussion. However, there is limited research related to bone injury. Therefore, the aim of this study was to investigate the potential factors influencing unintentional pelvic bone injury after HIFU ablation of uterine fibroids with magnetic resonance imaging (MRI). Methods: A total of 635 patients with fibroids treated with HIFU in the First Affiliated Hospital of Chongqing Medical University were enrolled. All patients underwent contrast-enhanced MRI (CE-MRI) pre- and post-HIFU. Based on the post-treatment MRI, the patients were divided into two groups: pelvic bone injury group and non-injury group, while the specific site of pelvic bone injury of each patient was recorded. The univariate and multivariate analyses were used to assess the correlations between the factors of fibroid features and treatment parameters and pelvic bone injury, and to further analyze the factors influencing the site of injury. Results: Signal changes in the pelvis were observed on CE-MRI in 51% (324/635) of patients after HIFU. Among them, 269 (42.4%) patients developed sacral injuries and 135 (21.3%) had pubic bone injuries. Multivariate analyses showed that patients with higher age [P=0.003; odds ratio (OR), 1.692; 95% confidence interval (CI): 1.191-2.404], large anterior side-to-skin distance of fibroid (P<0.001; OR, 2.297; 95% CI: 1.567-3.365), posterior wall fibroid (P=0.006; OR, 1.897; 95% CI: 1.204-2.989), hyperintensity on T2-weighted imaging (T2WI, P=0.003; OR, 2.125; 95% CI: 1.283-3.518), and large therapeutic dose (TD, P<0.001; OR, 3.007; 95% CI: 2.093-4.319) were at higher risk of postoperative pelvic bone injury. Further analysis of the factors influencing the site of the pelvic bone injury showed that some of the fibroid features and treatment parameters were associated with it. Moreover, some postoperative pain-related adverse events were associated with the pelvic bone injury. Conclusions: Post-HIFU treatment, patients may experience pelvic injuries to the sacrum, pubis, or a combination of both, and some of them experienced adverse events. Some fibroid features and treatment parameters are associated with the injury. Taking its influencing factors into full consideration preoperatively, slowing down treatment, and prolonging intraoperative cooling phase can help optimize treatment decisions for HIFU.

19.
Int J Hyperthermia ; 41(1): 2295813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234000

RESUMO

OBJECTIVE: To investigate the value of T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) in evaluating the therapeutic effect of high-intensity focused ultrasound (HIFU) in adenomyosis ablation. MATERIAL AND METHODS: One hundred eighty-nine patients with adenomyosis were treated with HIFU. The ablation areas on T2WI and DWI sequences were classified into different types: type I, relatively ill-defined rim or unrecognizable; subtype IIa, well-defined rim with hyperintensity; subtype IIb, well-defined rim with hypointensity. The volume of ablation areas on T2WI (VT2WI) and DWI (VDWI) was measured and compared with the non-perfused volume (NPV), and linear regression was conducted to analyze their correlation with NPV. RESULTS: The VT2WI of type I and type II (subtype IIa and subtype IIb) were statistically different from the corresponding NPV (p = 0.004 and 0.024, respectively), while no significant difference was found between the VDWI of type I and type II with NPV (p = 0.478 and 0.561, respectively). In the linear regression analysis, both VT2WI and VDWI were positively correlated with NPV, with R2 reaching 0.96 and 0.97, respectively. CONCLUSIONS: Both T2WI and DWI have the potential for efficient evaluation of HIFU treatment in adenomyosis, and DWI can be a replacement for CE-T1WI to some extent.


Assuntos
Adenomiose , Ablação por Ultrassom Focalizado de Alta Intensidade , Feminino , Humanos , Adenomiose/diagnóstico por imagem , Adenomiose/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
20.
Biomed Eng Online ; 22(1): 123, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093245

RESUMO

BACKGROUND: Prediction of non-perfusion volume ratio (NPVR) is critical in selecting patients with uterine fibroids who will potentially benefit from ultrasound-guided high-intensity focused ultrasound (HIFU) treatment, as it reduces the risk of treatment failure. The purpose of this study is to construct an optimal model for predicting NPVR based on T2-weighted magnetic resonance imaging (T2MRI) radiomics features combined with clinical parameters by machine learning. MATERIALS AND METHODS: This retrospective study was conducted among 223 patients diagnosed with uterine fibroids from two centers. The patients from one center were allocated to a training cohort (n = 122) and an internal test cohort (n = 46), and the data from the other center (n = 55) was used as an external test cohort. The least absolute shrinkage and selection operator (LASSO) algorithm was employed for feature selection in the training cohort. The support vector machine (SVM) was adopted to construct a radiomics model, a clinical model, and a radiomics-clinical model for NPVR prediction, respectively. The area under the curve (AUC) and the decision curve analysis (DCA) were performed to evaluate the predictive validity and the clinical usefulness of the model, respectively. RESULTS: A total of 851 radiomic features were extracted from T2MRI, of which seven radiomics features were screened for NPVR prediction-related radiomics features. The radiomics-clinical model combining radiomics features and clinical parameters showed the best predictive performance in both the internal (AUC = 0.824, 95% CI 0.693-0.954) and external (AUC = 0.773, 95% CI 0.647-0.902) test cohorts, and the DCA also suggested the radiomics-clinical model had the highest net benefit. CONCLUSIONS: The radiomics-clinical model could be applied to the NPVR prediction of patients with uterine fibroids treated by HIFU to provide an objective and effective method for selecting potential patients who would benefit from the treatment mostly.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Leiomioma , Humanos , Estudos Retrospectivos , Leiomioma/diagnóstico por imagem , Leiomioma/terapia , Imageamento por Ressonância Magnética/métodos , Ultrassonografia de Intervenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA