Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 32(6): 1408-19, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24578244

RESUMO

The concept of mesenchymal stem cells (MSCs) is becoming increasingly obscure due to the recent findings of heterogeneous populations with different levels of stemness within MSCs isolated by traditional plastic adherence. MSCs were originally identified in bone marrow and later detected in many other tissues. Currently, no cloning based on single surface marker is capable of isolating cells that satisfy the minimal criteria of MSCs from various tissue environments. Markers that associate with the stemness of MSCs await to be elucidated. A number of candidate MSC surface markers or markers possibly related to their stemness have been brought forward so far, including Stro-1, SSEA-4, CD271, and CD146, yet there is a large difference in their expression in various sources of MSCs. The exact identity of MSCs in vivo is not yet clear, although reports have suggested they may have a fibroblastic or pericytic origin. In this review, we revisit the reported expression of surface molecules in MSCs from various sources, aiming to assess their potential as MSC markers and define the critical panel for future investigation. We also discuss the relationship of MSCs to fibroblasts and pericytes in an attempt to shed light on their identity in vivo.


Assuntos
Biomarcadores/metabolismo , Membrana Celular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Separação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia
2.
Cytotherapy ; 15(3): 323-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23312450

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) hold great promise for tissue regeneration. With increasing numbers of clinical trials, the safety of BM-MSCs attracts great interest. Previously, we determined that rat BM-MSCs possessed spontaneous calcification without osteogenic induction after continuous culture. However, it is unclear whether BM-MSCs from other species share this characteristic. In this study, spontaneous calcification of BM-MSCs from rat, goat, and human specimens was investigated in vitro. BM-MSCs were cultured in complete medium, and calcification was determined by morphologic observation and alizarin red staining. It was demonstrated that rat BM-MSCs possessed a typically spontaneous calcification, whereas goat and human BM-MSCs under the same system proliferated significantly but did not calcify spontaneously. The significant species variation in spontaneous calcification of BM-MSCs described in this study provides useful information regarding evaluation of numerous BM-MSC-based approaches for bone regeneration and the safety of BM-MSCs.


Assuntos
Células da Medula Óssea/patologia , Regeneração Óssea , Calcinose , Células-Tronco Mesenquimais/patologia , Animais , Células da Medula Óssea/metabolismo , Cabras/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Ratos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA