Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 124: 111398, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265728

RESUMO

Angiogenesis plays a pivotal role in the progression and metastasis of solid cancers, including prostate cancer (PCa). While small extracellular vesicles derived from PCa cell lines induce a proangiogenic phenotype in vascular endothelial cells, the contribution of plasma exosomes from patients with PCa to this process remains unclear. Here, we successfully extracted and characterized plasma exosomes. Notably, a ring of PKH67-labeled exosomes was observed around the HUVEC nucleus using fluorescence microscopy, indicating the uptake of exosomes by HUVEC. At the cellular level, PCa plasma exosomes enhanced angiogenesis, proliferation, invasion, and migration of HUVEC cells. Moreover, PCa plasma exosomes promoted angiogenesis and aortic sprouting. MicroRNAs are the most common genetic material in exosomes, and to identify miRNAs associated with the angiogenic response, we performed small RNA sequencing followed by RT-qPCR and bioinformatics analysis. These analyses revealed distinct miRNA profiles in plasma exosomes from patients with PCa compared to healthy individuals. Notably, hsa-miR-184 emerged as a potential regulator implicated in the proangiogenic effects of PCa plasma exosomes.

2.
Clin Transl Oncol ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39196498

RESUMO

INTRODUCTION: This multi-center study aims to explore the roles of plasma exosomal microRNAs (miRNAs), ultrasound (US) radiomics, and total prostate-specific antigen (tPSA) levels in early prostate cancer detection. METHODS: We analyzed the publicly available dataset GSE112264 to identify the differentially expressed miRNAs associated with prostate cancer. Then, PyRadiomics was used to extract image features, and least absolute shrinkage and selection operator (LASSO) was used to screen the data. Subsequently, according to strict inclusion and exclusion criteria, the internal dataset (n = 199) was used to construct a diagnostic model, and the receiver operating characteristic (ROC) curve, calibration curve, decision curve analysis (DCA), and DeLong test were used to evaluate its diagnostic performance. Finally, we used an external dataset (n = 158) for further validation. RESULTS: The number of features extracted by PyRadiomics was 851, and the number of features screened by LASSO was 23. We combined the hsa-miR-320c, hsa-miR-944, radiomics, and tPSA features to construct a joint model. The area under the ROC curve of the combined model was 0.935. In the internal validation, the area under the curve (AUC) of the training set was 0.943, and the AUC of the test set was 0.946. The AUC of the external data set was 0.910. The calibration curve and decision curve were consistent with the performance of the combined model. There was a significant difference in the prediction ability between the combined prediction model and the single index prediction model, indicating the high credibility and accuracy of the combined model in predicting PCa. CONCLUSIONS: The combined prediction model, consisting of plasma exosomal miRNAs (hsa-miR-320c and hsa-miR-944), US radiomics, and clinical tPSA, can be utilized for the early diagnosis of prostate cancer.

4.
Discov Oncol ; 14(1): 133, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37470865

RESUMO

PURPOSE: Prostate cancer (PCa) with high Ki-67 expression and high Gleason Scores (GS) tends to have aggressive clinicopathological characteristics and a dismal prognosis. In order to predict the Ki-67 expression status and the GS in PCa, we sought to construct and verify MRI-based radiomics signatures. METHODS AND MATERIALS: We collected T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) images from 170 PCa patients at three institutions and extracted 321 original radiomic features from each image modality. We used support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) logistic regression to select the most informative radiomic features and built predictive models using up sampling and feature selection techniques. Using receiver operating characteristic (ROC) analysis, the discriminating power of this feature was determined. Subsequent decision curve analysis (DCA) assessed the clinical utility of the radiomic features. The Kaplan-Meier (KM) test revealed that the radiomics-predicted Ki-67 expression status and GS were prognostic factors for PCa survival. RESULT: The hypothesized radiomics signature, which included 15 and 9 selected radiomics features, respectively, was significantly correlated with pathological Ki-67 and GS outcomes in both the training and validation datasets. Areas under the curve (AUC) for the developed model were 0.813 (95% CI 0.681,0.930) and 0.793 (95% CI 0.621, 0.929) for the training and validation datasets, respectively, demonstrating discrimination and calibration performance. The model's clinical usefulness was verified using DCA. In both the training and validation sets, high Ki-67 expression and high GS predicted by radiomics using SVM models were substantially linked with poor overall survival (OS). CONCLUSIONS: Both Ki-67 expression status and high GS correlate with PCa patient survival outcomes; therefore, the ability of the SVM classifier-based model to estimate Ki-67 expression status and the Lasso classifier-based model to assess high GS may enhance clinical decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA