Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 387: 110818, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000455

RESUMO

Hyperglycaemia causes impairment of osteogenic differentiation and accelerates stem cell senescence, resulting in weakened osteogenesis and disordered bone metabolism. Phytic acid (PA) is an antioxidant that is reportedly beneficial to bone homeostasis. The present study aims to clarify how PA affects the osteogenic capacity and cellular senescence of bone marrow mesenchymal stem cells (BMSCs) exposed to high-glucose environments, as well as the potential molecular mechanisms. Our results indicate that osteogenic differentiation in BMSCs cultivated in high-glucose conditions is enhanced by PA, as evidenced by increased alkaline phosphatase activity and staining, Alizarin Red S staining, osteogenic marker in in vitro studies, and increased osteogenesis in animal experiments. PA also prevented high-glucose-induced senescence of BMSCs, as evidenced by the repression of reactive oxygen species production, senescence-associated ß-galactosidase staining, and P21 and P53 expression. Furthermore, it was found that PA rescued the high-glucose-inhibited expression of phosphorylated extracellular regulated protein kinases (p-ERK). The inhibition of ERK pathway by the specific inhibitor PD98059 blocked the PA-enhanced osteogenesis of BMSCs and promoted cell senescence. Our results revealed that PA enhances osteogenic differentiation and inhibits BMSC senescence in a high-glucose environment. In addition, the activation of the ERK pathway seems to mediate the beneficial effects of PA. The findings provide novel insights that could facilitate bone regeneration in patients with diabetes.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Humanos , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Sistema de Sinalização das MAP Quinases , Diferenciação Celular , Glucose/metabolismo , Células Cultivadas , Células da Medula Óssea
2.
Chem Biol Interact ; 354: 109835, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35090876

RESUMO

An in vitro model was established to simulate a diabetes-type environment by treating human periodontal stem cells with advanced glycation end-products (AGEs). Periostin (POSTN) plays a crucial role in maintaining the integrity of periodontal tissues. However, the role of POSTN in human periodontal stem cells stimulated by AGEs remains unknown. Diabetes mellitus is considered a metabolic disease, and DNA methylation of CpG islands is a biomarker of metabolic syndromes. Diabetes has been found to be closely related to the DNA methylation of certain genes. Here, we investigated the protective mechanism and effect of POSTN on osteogenesis and oxidative stress in the AGE environment, and further explored the CpG island methylation of specific genes potentially mediated by POSTN. The optimal concentration of AGEs was screened using CCK8. AGEs were found to contribute to oxidative stress. Conversely, reactive oxygen species production and malondialdehyde and superoxide activity indicated that the AGE + POSTN group decreased oxidative injury. According to an alkaline phosphatase assay, Alizarin Red S staining, and the expression of key genes and proteins involved in osteogenesis, POSTN mitigated the inhibitory effects of AGE on cell proliferation and osteogenic differentiation potential during osteogenic differentiation. In contrast, the growth and osteogenesis of human periodontal stem cells were notably suppressed by POSTN knockdown. Bisulfite sequencing PCR was used to evaluate the DNA methylation status. Moreover, AGE elevated the expression of DNA methyltransferas 1 (DNMT1) and inhibited the activation of CALAL promoter methylation, which was rescued by the addition of POSTN and 5-Azacytidine (5-AZA). In conclusion, POSTN attenuated the AGE-induced inhibition of osteogenesis in periodontal ligament stem cells by reducing AGE receptor levels and DNA methylation of the calcitonin-related polypeptide α (CALCA) promoter. Thus, POSTN is a promising candidate for dental bone regeneration, representing a novel therapeutic agent for diabetic patients. The mechanism underlying these processes may provide new insights into novel therapeutic targets for improving abnormal bone metabolism in patients with diabetes.


Assuntos
Osteogênese
3.
Anal Sci ; 32(4): 407-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27063712

RESUMO

A new method was developed for the determination of eight earthy-musty compounds in drinking water by gas chromatography tandem mass spectrometry (GC-MS/MS) combined with dispersive liquid-liquid microextraction (DLLME). In this work, the type and volume of extraction solvent and dispersion agent, and the amount of NaCl were optimized; the linearity, detection limit, recovery and precision of method were investigated. The results indicated that the target analytes were in the range of 0.2 - 100 µg/L with correlation coefficient (r) ranging from 0.9991 to 0.9999, the limit of detection (LOD, S/N = 3) of the analytes ranged from 0.2 to 1.0 ng/L with the enrichment factor of 320. The mean recoveries for drinking water at three spiked concentrations levels of 0.6 - 32 ng/L were in the range of 91.3 to 103%, the precision ranged from 3.1 to 7.5% (n = 6), and the inter-day precision was from 6.1 to 11.1% (n = 5). Only one of 15 selected real samples tested positive for GSM, and the concentration was 3 ng/L. This method was confirmed to be simple, fast, efficient, and accurate for the determination of earthy-musty compounds in aqueous samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA