Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 19: 6145-6160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911506

RESUMO

Background: Combination therapy offers superior therapeutic results compared to monotherapy. However, the outcomes of combination therapy often fall short of expectations, mainly because of increased toxicity from drug interactions and challenges in achieving the desired spatial and temporal distribution of drug delivery. Optimizing synergistic drug combination ratios to ensure uniform targeting and distribution across space and time, particularly in vivo, is a significant challenge. In this study, cRGD-coated liposomes encapsulating optimized synergistic cepharanthine (CEP; a chemotherapy drug) and IR783 (a phototherapy agent) were developed for combined chemotherapy and photothermal therapy in vitro and in vivo. Methods: An MTT assay was used to evaluate the combination index of CEP and IR783 in five cell lines. The cRGD-encapsulated liposomes were prepared via thin-film hydration, and unencapsulated liposomes served as controls for the loading of CEP and IR783. Fluorescence and photothermal imaging were used to assess the efficacy of CEP and IR783 encapsulated in liposomes at an optimal synergistic ratio, both in vitro and in vivo. Results: The combination indices of CEP and IR783 were determined in five cell lines. As a proof-of-concept, the optimal synergistic ratio (1:2) of CEP to IR783 in 4T1 cells was evaluated in vitro and in vivo. The average diameter of the liposomes was approximately 100 nm. The liposomes effectively retained the encapsulated CEP and IR783 in vitro at the optimal synergistic molar ratio for over 7 d. In vivo fluorescence imaging revealed that the fluorescence signal from cRGD-CEP-IR783-Lip was detectable at the tumor site at 4 h post-injection and peaked at 8 h. In vivo photothermal imaging of tumor-bearing mice indicated an increase in tumor temperature by 32°C within 200 s. Concurrently, cRGD-CEP-IR783-Lip demonstrated a significant therapeutic effect and robust biosafety in the in vivo antitumor experiments. Conclusion: The combination indices of CEP and IR783 were successfully determined in vitro in five cell lines. The cRGD-coated liposomes encapsulated CEP and IR783 at an optimal synergistic ratio, exhibiting enhanced antitumor effects and targeting upon application in vitro and in vivo. This study presents a novel concept and establishes a research framework for synergistic chemotherapy and phototherapy treatment.


Assuntos
Benzilisoquinolinas , Indóis , Lipossomos , Terapia Fototérmica , Lipossomos/química , Animais , Linhagem Celular Tumoral , Humanos , Feminino , Camundongos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Indóis/administração & dosagem , Terapia Fototérmica/métodos , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacocinética , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/administração & dosagem , Camundongos Endogâmicos BALB C , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacocinética , Sinergismo Farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/administração & dosagem , Terapia Combinada/métodos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Benzodioxóis
3.
Cell Rep ; 43(3): 113947, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38492220

RESUMO

N6-methyladenosine (m6A) modification has been implicated in many cell processes and diseases. YTHDF1, a translation-facilitating m6A reader, has not been previously shown to be related to allergic airway inflammation. Here, we report that YTHDF1 is highly expressed in allergic airway epithelial cells and asthmatic patients and that it influences proinflammatory responses. CLOCK, a subunit of the circadian clock pathway, is the direct target of YTHDF1. YTHDF1 augments CLOCK translation in an m6A-dependent manner. Allergens enhance the liquid-liquid phase separation (LLPS) of YTHDF1 and drive the formation of a complex comprising dimeric YTHDF1 and CLOCK mRNA, which is distributed to stress granules. Moreover, YTHDF1 strongly activates NLRP3 inflammasome production and interleukin-1ß secretion leading to airway inflammatory responses, but these phenotypes are abolished by deleting CLOCK. These findings demonstrate that YTHDF1 is an important regulator of asthmatic airway inflammation, suggesting a potential therapeutic target for allergic airway inflammation.


Assuntos
Asma , Relógios Circadianos , Humanos , Adenosina , Células Epiteliais , Inflamação , Proteínas de Ligação a RNA/genética
4.
FASEB J ; 38(3): e23472, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329323

RESUMO

Allergic asthma development and pathogenesis are influenced by airway epithelial cells in response to allergens. Heme oxygenase-1 (HO-1), an inducible enzyme responsible for the breakdown of heme, has been considered an appealing target for the treatment of chronic inflammatory diseases. Herein, we report that alleviation of allergic airway inflammation by HO-1-mediated suppression of pyroptosis in airway epithelial cells (AECs). Using house dust mite (HDM)-induced asthma models of mice, we found increased gasdermin D (GSDMD) in the airway epithelium. In vivo administration of disulfiram, a specific inhibitor of pore formation by GSDMD, decreased thymic stromal lymphopoietin (TSLP) release, T helper type 2 immune response, alleviated airway inflammation, and reduced airway hyperresponsiveness (AHR). HO-1 induction by hemin administration reversed these phenotypes. In vitro studies revealed that HO-1 restrained GSDMD-mediated pyroptosis and cytokine TSLP release in AECs by binding Nuclear Factor-Kappa B (NF-κB) p65 RHD domain and thus controlling NF-κB-dependent pyroptosis. These data provide new therapeutic indications for purposing HO-1 to counteract inflammation, which contributes to allergic inflammation control.


Assuntos
Asma , Heme Oxigenase-1 , NF-kappa B , Animais , Camundongos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Piroptose , Linfopoietina do Estroma do Timo
6.
Org Biomol Chem ; 21(22): 4672-4682, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219018

RESUMO

Phototherapy is a promising approach for the treatment of cancers and other diseases. So far, many photosensitizers have been developed for photodynamic therapy (PDT) or photothermal therapy (PTT). However, it remains a challenge to develop a system for synergistic PDT and PTT with specific targeting and real-time fluorescence tracking. Herein, we designed a multifunctional BODIPY derivative, Lyso-BDP, for synergistic PDT and PTT against tumors. Lyso-BDP was composed of three parts: (1) the BODIPY fluorophore was selected as a theranostic core, (2) a morpholine group modified on meso-BODIPY served as a lysosome-targeting unit for enhancing the antitumor effect, and (3) N,N-diethyl-4-vinylaniline was attached to the BODIPY core to extend its wavelength to the near-infrared region. Finally, Lyso-BDP shows near-infrared absorption and emission, photosensitizing activity, lysosomal targeting, and synergistic PDT and PTT effects, and effectively kills cancer cells both in vitro and in vivo. Therefore, our study demonstrates that Lyso-BDP can serve as a promising photosensitizer in the therapy of cancer with potential clinical application prospects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Fototerapia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
7.
ACS Omega ; 8(13): 12481-12488, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033849

RESUMO

To get a tumor-targeted contrast agent for imaging guide resection of tumors, we designed a novel fluorescent probe based on the heptamethine cyanine core, Cy7-MO, which has excellent water solubility and near-infrared photophysical and lysosomal targeting properties. The chemical structure of Cy7-MO was characterized by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The toxicity of Cy7-MO was evaluated by cell counting kit-8. Then, a cellular-level study was conducted to evaluate the suborganelle localization in 4T1-Luc1 cells, and it was also used for surgical navigation in orthotopic breast tumor resection in vivo. The results showed that Cy7-MO was well targeted to lysosomes. Importantly, the Cy7-MO probe was found to be well tolerable and exhibited excellent biocompatibility. Moreover, the orthotopic breast tumor margin was clearly visualized through fluorescence guiding of Cy7-MO. Finally, the correct tumor tissues were completely removed, and a negative margin was obtained successfully, which demonstrated an enhanced precision of surgery.

8.
Anal Bioanal Chem ; 415(12): 2209-2215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856821

RESUMO

In this work, a simple and sensitive electrochemical sensor was proposed for the detection of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity. Firstly, the BACE1 specific peptide was modified onto the Au electrode to graft a single-strand DNA with polycytosine DNA sequence (dC12) via amide bonding between peptide and dC12. Because the dC12 is abundant in phosphate groups, thus it can react with molybdate to form redox molybdophosphate, which can generate electrochemical current. Using BACE1 as a model peptidase, the proposed sensor shows a linear response range from 1 to 15 U/mL and limit of detection down to 0.05 U/mL. The sensor displays good performance for the BACE1 activity detection in human serum samples, which may have potential applications in the clinical diagnostics of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos/genética , Sequência de Bases , Peptídeos beta-Amiloides/metabolismo
9.
J Photochem Photobiol B ; 241: 112666, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36842340

RESUMO

Cancer treatment modalities have gradually shifted from monotherapies to multimodal therapies. It is still a challenge to develop a synergistic chemo-phototherapy system with relieving tumor hypoxia, specific targeting, and real-time fluorescence tracking. In this study, we designed a multifunctional BODIPY derivative, FBD-M, for synergistic chemo-phototherapy against hypoxic tumors. FBD-M was composed of four parts: 1) The BODIPY fluorophore selected as a theranostic core, 2) A pentafluorobenzene group modified on meso-BODIPY to carry oxygen, 3) A morpholine group hooked to one side of BODIPY served as a lysosome-targeting unit for enhancing antitumor effect, and 4) An aromatic nitrogen mustard group introduced on other side of BODIPY to achieve chemotherapy. After introducing the morpholine and aromatic nitrogen mustard in BODIPY, the conjugate system of BODIPY was also expanded to realize near-infrared (NIR) phototherapy. Finally, FBD-M was obtained by a rational design, which possessed with NIR absorbance and emission, photosensitive activity, oxygen-carrying capability for relieving tumor hypoxia, high photothermal conversion efficiency, good photostability, lysosome targeting, low toxicity, and synergistic chemo-phototherapy against hypoxic tumors. FBD-M had been successfully applied for anticancer in vitro and in vivo. Our study demonstrates that FBD-M can serve as an ideal multifunctional theranostic agents.


Assuntos
Nanopartículas , Neoplasias , Humanos , Mecloretamina/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Fototerapia/métodos , Oxigênio , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral
10.
ACS Omega ; 7(50): 46891-46899, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570203

RESUMO

The cell plasma membrane, the natural barrier of a cell, plays critical roles in a mass of cell physiological and pathological processes. Therefore, revealing and monitoring the local status of the cell plasma membrane are of great significance. Herein, using a near-infrared (NIR) fluorescence probe BTCy, microenvironmental polarity in the cell plasma membrane was in situ monitored. BTCy showed sensitive and selective fluorescence decrease response at 706 nm with the increase of polarity as its polarity-responsive D-π-A structure. Most importantly, BTCy showed unexpected cell plasma membrane-targeting ability, probably due to its amphiphilic structure. With BTCy, the distinguishing imaging of cancer and normal cells was done, in which cancer cells exhibited significantly stronger signals due to their lower cell plasma membrane polarity. In addition, with the imaging of BTCy, the ferroptosis process was revealed with no significant cell plasma membrane polarity variation for the first time. Furthermore, BTCy was employed for in vivo imaging of tumor tissue in the 4T1-tumor-bearing mice. The polarity-responsive and cell plasma membrane-targeting properties of BTCy make it a useful tool for monitoring cell plasma membrane polarity variation, providing an efficient and simple method for tumor diagnosis.

11.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293406

RESUMO

Photodynamic therapy (PDT) is a promising noninvasive medical technology that has been approved for the treatment of a variety of diseases, including bacterial and fungal infections, skin diseases, and several types of cancer. In recent decades, many photosensitizers have been developed and applied in PDT. However, PDT is still limited by light penetration depth, although many near-infrared photosensitizers have emerged. The chemiluminescence-mediated PDT (CL-PDT) system has recently received attention because it does not require an external light source to achieve targeted PDT. This review focuses on the rational design of organic CL-PDT systems. Specifically, PDT types, light wavelength, the chemiluminescence concept and principle, and the design of CL-PDT systems are introduced. Furthermore, chemiluminescent fraction examples, strategies for combining chemiluminescence with PDT, and current cellular and animal applications are highlighted. Finally, the current challenges and possible solutions to CL-PDT systems are discussed.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luminescência , Neoplasias/tratamento farmacológico
12.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684397

RESUMO

Photodynamic therapy (PDT) has emerged as a new antitumor modality. Hypoxia, a vital characteristic of solid tumors, can be explored to stimulate the fluorescence response of photosensitizers (PSs). Considering the characteristics of PDT, the targeting of organelles employing PS would enhance antitumor effects. A new multifunctional cyanine-based PS (CLN) comprising morpholine and nitrobenzene groups was prepared and characterized. It generated fluorescence in the near-infrared (NIR) region in the presence of sodium dithionite (Na2S2O4) and nitroreductase (NTR). The response mechanism of CLN was well investigated, thus revealing that its obtained reduction product was CLNH. The obtained fluorescence and singlet oxygen quantum yield of CLNH were 8.65% and 1.60%, respectively. Additionally, the selective experiment for substrates indicated that CLN exhibited a selective response to NTR. Thus, CLN fluorescence could be selectively switched on and its fluorescence intensity increased, following a prolonged stay in hypoxic cells. Furthermore, fluorescence colocalization demonstrated that CLN could effectively target lysosomes. CLN could generate reactive oxygen species and kill tumor cells (IC50 for 4T1 cells was 7.4 µM under a hypoxic condition), following its response to NTR. NIR imaging and targeted PDT were finally applied in vivo.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Hipóxia/tratamento farmacológico , Lisossomos , Nitrorredutases , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
13.
J Healthc Eng ; 2022: 1898610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469232

RESUMO

Objective: To explore the effects of different intervention methods on intestinal cleanliness in children undergoing colonoscopy. Methods: 61 children who underwent colonoscopy in our hospital from May 2020 to May 2021 were randomly divided into group A (n = 21), group B (n = 30), and group C (n = 10). The children in the three groups were intervened in different ways before the colonoscopy. Group A received a long-handled Kaiselu +1 cathartic intervention, while group B received a long-handled Kaiselu +2 cathartic intervention, and group C received an enema plus one cathartic intervention. The patients in the three groups were given the same diet before the examination until the examination was completed. The time-related indexes, cleanliness, adverse reactions, tolerance, and adaptability of the three groups under different dietary interventions and cleaning methods were evaluated. Results: The first defecation time in group C was lower than that in group A and group B, the hospital stay was longer than that in group A and group B (p > 0.05), and the colonoscopy time in group C was shorter than that in group A and group B (p < 0.05). The BBPS score of group C was (2.10 ± 0.32), which was significantly higher than that of group A (1.16 ± 0.19) and group B (1.77 ± 0.18) (p < 0.05). The BBPS scores of children with liquid food in the three groups were significantly higher than those of common food, and the BBPS scores of liquid food and common food in group C were significantly higher than those in group A and group B (p < 0.05). The incidence of adverse reactions in group C was 20.00%, which was significantly lower than 33.33% in group A and 23.33% in group B (p < 0.05). The proportion of grade I in group C was 50.00%, which was significantly higher than 38.10% in group A and 43.33% in group B (p < 0.05). Conclusion: Children undergoing colonoscopy take preintestinal preparation under different diets and intervention methods. The cleanliness of liquid food and enema + one-time laxative one day before colonoscopy is the best, which can significantly reduce adverse reactions and increase the acceptability and adaptability of children. It is worthy of clinical application.


Assuntos
Catárticos , Colonoscopia , Catárticos/efeitos adversos , Criança , Colonoscopia/métodos , Dieta , Alimentos , Humanos
14.
Chempluschem ; 87(4): e202200054, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35384394

RESUMO

Superoxide anion (O2.- ), a short-lived, highly active reactive oxygen species, participates in many physiological processes. This work reports the design of a chemiluminescent probe (CLO) based on 1,2-dioxetane-phenol with a selective and sensitive response to O2.- . The CLO consisted of a 1,2-dioxetane-phenol as a chemiluminophore core bearing a trifluoromethanesulfonate (Tf) moiety and methyl acrylate group. Upon reacting with O2.- , the Tf was specifically cleaved from the CLO, resulting in chemiluminescence generation. The CLO emits chemiluminescence at 450-650 nm (λmax =540 nm), representing visible and red chemiluminescent molecules, responsive to O2.- . The CLO processes high sensitivity (Limit of detection=66 nM) and selectivity for O2.- with and has been applied to track O2.- fluctuations in living cells and animals. In addition, CLO successfully detected and visualized O2.- -related biochemical processes, making it promising as an important imaging tool for studying redox in biology and medicine.


Assuntos
Luminescência , Superóxidos , Animais , Compostos Heterocíclicos com 1 Anel
15.
World J Gastroenterol ; 27(44): 7705-7715, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34908808

RESUMO

BACKGROUND: Interleukin 10 receptor alpha subunit (IL10RA) dysfunction is the main cause of very early-onset inflammatory bowel disease (VEO-IBD) in East Asians. AIM: To identify disease-causing gene mutations in four patients with VEO-IBD and verify functional changes related to the disease-causing mutations. METHODS: From May 2016 to September 2020, four young patients with clinically diagnosed VEO-IBD were recruited. Before hospitalization, using targeted gene panel sequencing and trio-whole-exome sequencing (WES), three patients were found to harbor a IL10RA mutation (c.301C>T, p.R101W in one patient; c.537G>A, p.T179T in two patients), but WES results of the fourth patient were not conclusive. We performed whole-genome sequencing (WGS) on patients A and B and reanalyzed the data from patients C and D. Peripheral blood mononuclear cells (PBMCs) from patient D were isolated and stimulated with lipopolysaccharide (LPS), interleukin 10 (IL-10), and LPS + IL-10. Serum IL-10 levels in four patients and tumor necrosis factor-α (TNF-α) in the cell supernatant were determined by enzyme-linked immunosorbent assay. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and Ser727 in PBMCs was determined by western blot analysis. RESULTS: The four children in our study consisted of two males and two females. The age at disease onset ranged from 18 d to 9 mo. After hospitalization, a novel 333-bp deletion encompassing exon 1 of IL10RA was found in patients A and B using WGS and was found in patients C and D after reanalysis of their WES data. Patient D was homozygous for the 333 bp deletion. All four patients had elevated serum IL-10 levels. In vitro, IL-10-stimulated PBMCs from patient D failed to induce STAT3 phosphorylation at Tyr705 and only minimally suppressed TNF-α production induced by LPS. Phosphorylation at Ser727 in PBMCs was not affected by LPS or LPS + IL-10 in both healthy subjects and in patient D. CONCLUSION: WGS revealed a novel 333-bp deletion of IL10RA in four patients with VEO-IBD, whereas the WES results were inconclusive.


Assuntos
Doenças Inflamatórias Intestinais , Subunidade alfa de Receptor de Interleucina-10 , Pareamento de Bases , Feminino , Humanos , Doenças Inflamatórias Intestinais/genética , Subunidade alfa de Receptor de Interleucina-10/genética , Subunidade beta de Receptor de Interleucina-10/genética , Leucócitos Mononucleares , Masculino
16.
Front Pharmacol ; 11: 911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670058

RESUMO

Quinazoline derivatives display multiple pharmacological activities and target various biological receptors. Based on the skeleton of quinazoline core, we designed and synthesized three new quinazoline-phenyl chlormethine conjugates (I-III) bearing a Schiff base (C = N) linker, and investigated their anti-tumor effects on HepG2-xenografted tumor and human cancer cell line HepG2. Among these compounds, compound II showed better inhibitory effect against HepG2 cells. In the present study, TUNEL staining, western blot, molecular docking, and siRNA were used to investigate the inhibitory mechanism of compound II towards hepatoma. Compound II inhibited HepG2-xenografted tumor growth in nude mice. Moreover, Compound II not only up-regulated Bax/Bcl-2 ratio and active-caspase 3 level, but also down-regulated Sirt1 expression and its activity, as well as PGC-1α expression. Furthermore, compound II also significantly suppressed the promotion of HepG2 cell proliferation, as evidenced by MTT assay and lactate dehydrogenase (LDH) release assay. Of note, the cytotoxicity of Compound II on HepG2 cells mainly via regulating Sirt1/caspase 3 signaling pathway, consisting with the results in vivo. Intriguingly, z-DEVD-FMK, a caspase 3 inhibitor, almost abolished the inhibitory effects of compound II. Of note, knockdown of caspase 3 by siRNA significantly reversed the inhibitory effect of compound II on HepG2. Interestingly, compound II directly bonded to Sirt1, indicating that Sirt1 might be a promising therapeutic target of compound II. In summary, our findings reveal that compound II, a new synthetical phenyl chlormethine-quinazoline derivative, contributes to the apoptosis of HepG2 cells both in vivo and in vitro through mediating Sirt1/caspase 3 singling pathway. These findings demonstrate that compound II may be a new potent agent against hepatocellular carcinoma.

17.
Oncol Lett ; 18(2): 1199-1206, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31423180

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common types of cancer worldwide. However, operative diagnostic and prognostic systems for ESCC remain to be established. To improve assessment of the prognosis for patients with ESCC, the present study developed an online consensus survival tool for ESCC, termed OSescc. OSescc was built using 264 ESCC cases with gene expression data and relevant clinical information obtained from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Kaplan-Meier survival plots with hazard ratios and P-values were generated by OSescc to predict the association between potential biomarkers and relapse free survival and overall survival. In addition, the current study integrated a function by which one could assess the prognosis based on an individual probe or the mean value of multiple probes for each gene, which helped improve the evaluation of the validity and reliability of the potential prognosis biomarkers. OSescc can be accessed at bioinfo.henu.edu.cn/DBList.jsp.

18.
Neoplasia ; 21(6): 571-581, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31048097

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide, particularly in Asian populations, and responds poorly to conventional therapy. Subclassification of ESCCs by molecular analysis is a powerful strategy in extending conventional clinicopathologic classification, improving prognosis and therapy. Here we identified two ESCC molecular subtypes in Chinese population using gene expression profiling data and further validated the molecular subtypes in two other independent Asian populations (Japanese and Vietnamese). Subtype I ESCCs were enriched in pathways including immune response, while genes overexpressed in subtype II ESCCs were mainly involved in ectoderm development, glycolysis process, and cell proliferation. Specifically, we identified potential ESCC subtype-specific diagnostic markers (FOXA1 and EYA2 for subtype I, LAMC2 and KRT14 for subtype II) and further validated them in a fourth Asian cohort. In addition, we propose a few subtype-specific therapeutic targets for ESCC, which may guide future ESCC clinical treatment when further validated.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas de Neoplasias/genética , Prognóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático/genética , Carcinoma de Células Escamosas do Esôfago/classificação , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise em Microsséries , Pessoa de Meia-Idade
19.
Front Genet ; 10: 1378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32153627

RESUMO

Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank p value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as PROM1 (HR = 2.4120, p = 0.0071) and CXCR4 (HR = 1.5578, p < 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.

20.
Front Oncol ; 8: 491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425968

RESUMO

Lung cancer is one of leading causes of cancer death all over the world. Non-small cell lung cancer (NSCLC) is the most predominant subtype of lung cancer. Molecular targeting therapy has been shown great success in the treatment of advanced NSCLC. Thus, an easy, sensitive, and specific way of recognizing therapeutic gene targets would help to select effective treatments, to improve physical condition and increase patient survival. In this study, we recruited and followed up a female NSCLC patient, whose plasma ctDNAs (circulating tumor DNAs), blood cell DNAs, psDNAs (pleural effusion supernatant DNAs), and ppDNAs (pleural effusion pellet DNAs), were collected and analyzed over periodic time points by methods of next generation sequencing (NGS), droplet digital PCR (ddPCR), and Amplification Refractory Mutation System (ARMS). In addition, pleural effusion pellets were stained by IHC (immunohistochemistry). The investigation results showed that EGFR L858R mutation was recognized by methods of NGS, ddPCR, and ARMS, while EGFR T790M mutation was only identified by methods of NGS and ddPCR but not ARMS, indicating that ARMS as an auxiliary clinical diagnostic method, is less sensitive and less reliable than NGS and ddPCR. In summary, the non-invasive and sensitive way of collecting ctDNAs for NGS and/or ddPCR screenings offers patients new diagnosis and therapeutic options.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA