Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cytotherapy ; 25(10): 1037-1047, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37436338

RESUMO

BACKGROUND AIMS: Radiation therapy is the standard treatment for patients with nasopharyngeal carcinoma (NPC), but relapse occurs in 10% to 20% of patients. The treatment of recurrent nasopharyngeal carcinoma (rNPC) remains challenging. Chimeric antigen receptors (CAR)-T-cell therapy has achieved good outcomes in the treatment of leukemia and seems to be a promising therapeutic strategy for solid tumors. c-Met has been found to be highly expressed in multiple cancer types, and the activation of c-Met leads to the proliferation and metastasis of cancer cells. However, the expression of c-Met in rNPC tissues and whether it can be used as a target for CAR-T therapy in rNPC remain to be investigated. METHODS: We detected the expression of c-Met in 24 primary human rNPC tissues and three NPC cell lines and constructed two different antibody-derived anti-c-Met CARs, namely, Ab928z and Ab1028z. To estimate the function of these two different c-Met-targeted CAR-T cells, CD69 expression, cytotoxicity and cytokine secretion of CAR-T cells were assessed after coculture with target cells. A cell line-derived xenograft mouse model also was used to evaluate these two anti-c-Met CAR-T cells. Furthermore, we determined whether combination with an anti-EGFR antibody could promote the antitumor effect of CAR-T cells in a patient-derived xenograft mouse model. RESULTS: High c-Met expression was detected in 23 of 24 primary human rNPC tissues by immunohistochemistry staining and in three NPC cell lines by flow cytometry. Ab928z-T cells and Ab1028z-T cells showed significantly upregulated expression of CD69 after coculture with targeted cells. However, Ab1028z-T cells showed superior cytokine secretion and antitumor activity. Furthermore, Ab1028z-T cells effectively suppressed tumor growth compared with control CAR-T cells, and the combination with nimotuzumab further enhanced the tumor-clearing ability of Ab1028z-T cells. CONCLUSIONS: We found that c-Met is highly expressed in rNPC tissues and confirmed its potential as a CAR-T target for rNPC. Our study provides a new idea for the clinical treatment of rNPC.


Assuntos
Neoplasias Nasofaríngeas , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Citocinas/metabolismo , Imunoterapia Adotiva , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Proto-Oncogênicas c-met/metabolismo
2.
Int Immunopharmacol ; 121: 110402, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301125

RESUMO

Colorectal cancer is globally ranked second in both incidence and mortality rate. It usually develops during the middle or late stages of diagnosis, and is characterized by easy metastasis, poor prognosis, and a significant decline in postoperative quality of life. ROR1 is an excellent oncoembryonic antigen in numerous immunotherapy treatments for tumors. Additionally, it is overexpressed in colorectal cancer. To fill the void in CRC treatment with ROR1 as a target of CAR-T immunotherapy, we designed and prepared antiROR1-CART. This third-generation CAR-T cell can effectively inhibit the growth of colorectal cancer in vitro and in vivo.


Assuntos
Neoplasias Colorretais , Linfócitos T , Humanos , Receptores de Antígenos de Linfócitos T , Qualidade de Vida , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Imunoterapia Adotiva , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética
3.
Mol Ther Oncolytics ; 28: 46-58, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36654786

RESUMO

Tumor cells and the immunosuppressive tumor microenvironment suppress the antitumor activity of T cells through immune checkpoints, including the PD-L1/PD-1 axis. Cytokine-inducible SH2-containing protein (CISH), a member of the suppressor of cytokine signaling (SOCS) family, inhibits JAK-STAT and T cell receptor (TCR) signaling in T and natural killer (NK) cells. However, its role in the regulation of immune checkpoints in T cells remains unclear. In this study, we ablated CISH in T cells with CRISPR-Cas9 and found that the sensitivity of T cells to TCR and cytokine stimulation was increased. In addition, chimeric antigen receptor T cells with CISH deficiency exhibited longer survival and higher cytokine secretion and antitumor activity. Notably, PD-1 expression was decreased in activated CISH-deficient T cells in vitro and in vivo. The level of FBXO38, a ubiquitination-regulating protein that reduces PD-1 expression, was elevated in activated T cells after CISH ablation. Hence, this study reveals a mechanism by which CISH promotes PD-1 expression by suppressing the expression of FBXO38 and proposes a new strategy for augmenting the therapeutic effect of CAR-T cells by inhibiting CISH.

4.
Clin Exp Med ; 23(6): 2409-2419, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36495368

RESUMO

Colorectal cancer (CRC) currently has a poor prognosis with a 6.9-year median survival time; to relieve this malignant cancer, we proposed to establish CRC xenografts that can be used to evaluate the cytotoxicity of adoptive chimeric antigen receptor (CAR)-T cells and accelerate the clinical translation of CAR-T cells for use against CRC. We first verified that CD318 had a higher expression level in primary human CRC tissues than in normal tissues based on hundreds of clinical samples. Then, we redirected CAR-T cells containing anti-CD318 single-chain variable fragment (anti-CD318 scFv), CD3ζ, CD28, and Toll-like receptor 2 (TLR2) domains. Next, we evaluated the function of these CAR-T cells in vitro in terms of surface phenotype changes, cytotoxicity and cytokine secretion when they encountered CD318+ CRC cells. Finally, we established two different xenograft mouse models to assess in vivo antitumor activity. The results showed that CAR318 T cells were significantly activated and exhibited strong cytotoxicity and cytokine-secreting abilities against CRC cells in vitro. Furthermore, CAR318 T cells induced CRC regression in different xenograft mouse models and suppressed tumors compared with CAR19 T cells. In summary, our work demonstrates that CAR318 T cells possess strong antitumor capabilities and represent a promising therapeutic approach for CRC.


Assuntos
Neoplasias Colorretais , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos de Linfócitos T/genética , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Linfócitos T , Citocinas/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Front Immunol ; 12: 660488, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326835

RESUMO

T cell infiltration into tumors is essential for successful immunotherapy against solid tumors. Herein, we found that the expression of hyaluronic acid synthases (HAS) was negatively correlated with patient survival in multiple types of solid tumors including gastric cancer. HA impeded in vitro anti-tumor activities of anti-mesothelin (MSLN) chimeric antigen receptor T cells (CAR-T cells) against gastric cancer cells by restricting CAR-T cell mobility in vitro. We then constructed a secreted form of the human hyaluronidase PH20 (termed sPH20-IgG2) by replacing the PH20 signal peptide with a tPA signal peptide and attached with IgG2 Fc fragments. We found that overexpression of sPH20-IgG2 promoted CAR-T cell transmigration through an HA-containing matrix but did not affect the cytotoxicity or cytokine secretion of the CAR-T cells. In BGC823 and MKN28 gastric cancer cell xenografts, sPH20-IgG2 promoted anti-mesothelin CAR-T cell infiltration into tumors. Furthermore, mice infused with sPH20-IgG2 overexpressing anti-MSLN CAR-T cells had smaller tumors than mice injected with anti-MSLN CAR-T cells. Thus, we demonstrated that sPH20-IgG2 can enhance the antitumor activity of CAR-T cells against solid tumors by promoting CAR-T cell infiltration.


Assuntos
Proteínas Ligadas por GPI/imunologia , Hialuronan Sintases/genética , Hialuronan Sintases/imunologia , Neoplasias Gástricas/imunologia , Linfócitos T/classificação , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Imunoterapia Adotiva , Mesotelina , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Organismos Livres de Patógenos Específicos , Neoplasias Gástricas/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncogene ; 40(8): 1476-1489, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33452453

RESUMO

Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune activities and facilitate cancer progression. Although the concept of immunosuppressive MDSCs is well established, the mechanism that MDSCs regulate non-small cell lung cancer (NSCLC) progression through the paracrine signals is still lacking. Here, we reported that the infiltration of MDSCs within NSCLC tissues was associated with the progression of cancer status, and was positively correlated with the Patient-derived xenograft model establishment, and poor patient prognosis. Intratumoral MDSCs directly promoted NSCLC metastasis and highly expressed chemokines that promote NSCLC cells invasion, including CCL11. CCL11 was capable of activating the AKT and ERK signaling pathways to promote NSCLC metastasis through the epithelial-mesenchymal transition (EMT) process. Moreover, high expression of CCL11 was associated with a poor prognosis in lung cancer as well as other types of cancer. Our findings underscore that MDSCs produce CCL11 to promote NSCLC metastasis via activation of ERK and AKT signaling and induction of EMT, suggesting that the MDSCs-CCL11-ERK/AKT-EMT axis contains potential targets for NSCLC metastasis treatment.


Assuntos
Proliferação de Células/genética , Quimiocina CCL11/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Metástase Neoplásica , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Leukemia ; 35(5): 1380-1391, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33168950

RESUMO

Chimeric antigen receptor (CAR) T cell therapies lead to high clinical response rates in B cell malignancies, and are under investigation for treatment of solid tumors. While high systemic interleukin- (IL-) 6 levels are associated with clinical cytokine release syndrome (CRS), the role of IL-6 trans-signaling within CAR T-cells has not been reported. We generated CAR T cells that constitutively express hyper IL-6 (HIL-6), a designer cytokine that activates the trans-signaling pathway. HIL-6-expressing CAR T-cells exhibited enhanced proliferation and antitumor efficacy in vitro and in xenograft models. However, HIL-6 CAR T cells caused severe graft-versus-host disease (GVHD). Transcriptomic profiling revealed that HIL-6 stimulation of CAR T cells upregulated genes associated with T cell migration, early memory differentiation, and IL-6/GP130/STAT3 signaling. Since IL-6 trans-signaling acts via surface GP130, we generated CAR T cells expressing a constitutively-active form of GP130 and found these retained improved antitumor activity without signs of GVHD in preclinical models of B-cell leukemia and solid tumors. Taken together, these results show that IL-6 trans-signaling can enhance expansion and antitumor activity of CAR T cells via the GP130/STAT3 pathway, and suggest that expression of GP130 within CAR T cells could lead to improved antitumor efficacy without systemic IL-6 trans-signaling.


Assuntos
Interleucina-6/imunologia , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
8.
Biomark Res ; 8: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32010446

RESUMO

BACKGROUND: Gastric cancer is a deadly malignancy and is a prognostically unfavorable entity with restricted therapeutic strategies available. Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI)-anchored cell surface protein widely expressed in bladder, prostate, and pancreatic cancers. Existing studies have thoroughly recognized the availability of utilizing anti-PSCA CAR-T cells in the treatment of metastatic prostate cancer and non-small-cell lung cancer. However, no previous study has investigated the feasibility of using anti-PSCA CAR-T cells to treat gastric cancer, irrespective of the proven expression of PSCA on the gastric cancer cell surface. METHODS: We determined the expression of PSCA in several primary tumor tissues and constructed third-generation anti-PSCA CAR-T cells. We then incubated anti-PSCA CAR-T cells and GFP-T cells with target tumor cell lines at E:T ratios of 2:1, 1:1, 1:2, and 1:4 to evaluate the therapeutic efficacy of anti-PSCA CAR-T cells in vitro. We also assayed canonical T cell activation markers after coculturing anti-PSCA CAR-T cells with target cell lines by flow cytometry. The detection of a functional cytokine profile was carried out via enzyme-linked immunosorbent assays. We then evaluated the antitumor activity of anti-PSCA CAR-T cells in vivo by establishing two different xenograft GC mouse models. RESULTS: Anti-PSCA CAR-T cells exhibited upregulated activation markers and increased cytokine production profiles related to T cell cytotoxicity in an antigen-dependent manner. Moreover, anti-PSCA CAR-T cells exhibited robust anti-tumor cytotoxicity in vitro. Importantly, we demonstrated that anti-PSCA CAR-T cells delivered by peritumoral injection successfully stunted tumor progression in vivo. However, intravenous administration of anti-PSCA CAR-T cells failed to reveal any therapeutic improvements. CONCLUSIONS: Our findings corroborated the feasibility of anti-PSCA CAR-T cells and their efficacy against gastric cancer, implicating the potential of applying anti-PSCA CAR-T cells to treat GC patients in the clinic.

9.
Biomark Res ; 7: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31463062

RESUMO

CAR-T cell therapy targeting CD19 has achieved remarkable success in the treatment of B cell malignancies, while various solid malignancies are still refractory for lack of suitable target. In recent years, a large number of studies have sought to find suitable targets with low "on target, off tumor" concern for the treatment of solid tumors. Mesothelin (MSLN), a tumor-associated antigen broadly overexpressed on various malignant tumor cells, while its expression is generally limited to normal mesothelial cells, is an attractive candidate for targeted therapy. Strategies targeting MSLN, including antibody-based drugs, vaccines and CAR-T therapies, have been assessed in a large number of preclinical investigations and clinical trials. In particular, the development of CAR-T therapy has shown great promise as a treatment for various types of cancers. The safety, efficacy, doses, and pharmacokinetics of relevant strategies have been evaluated in many clinical trials. This review is intended to provide a brief overview of the characteristics of mesothelin and the development of strategies targeting MSLN for solid tumors. Further, we discussed the challenges and proposed potential strategies to improve the efficacy of MSLN targeted immunotherapy.

10.
J Hematol Oncol ; 12(1): 18, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777106

RESUMO

BACKGROUND: Gastric cancer (GC) is a common cancer in Asia and currently lacks a targeted therapy approach. Mesothelin (MSLN) has been reported to be expressed in GC tissue and could be targeted by chimeric antigen receptor (CAR) T cells. Mesothelin targeting CAR-T has been reported in mesothelioma, lung cancer, breast cancer, and pancreas cancer. However, the feasibility of using anti-MSLN CAR T cells to treat GC remains to be studied. METHODS: We verified MSLN expression in primary human GC tissues and GC cell lines and then redirected T cells with a CAR containing the MSLN scFv (single-chain variable fragment), CD3ζ, CD28, and DAP10 intracellular signaling domain (M28z10) to target MSLN. We evaluated the function of these CAR T cells in vitro in terms of cytotoxicity, cytokine secretion, and surface phenotype changes when they encountered MSLN+ GC cells. We also established four different xenograft GC mouse models to assess in vivo antitumor activity. RESULTS: M28z10 T cells exhibited strong cytotoxicity and cytokine-secreting ability against GC cells in vitro. In addition, cell surface phenotyping suggested significant activation of M28z10 T cells upon target cell stimulation. M28z10 T cells induced GC regression in different xenograft mouse models and prolonged the survival of these mice compared with GFP-transduced T cells in the intraperitoneal and pulmonary metastatic GC models. Importantly, peritumoral delivery strategy can lead to improved CAR-T cells infiltration into tumor tissue and significantly suppress the growth of GC in a subcutaneous GC model. CONCLUSION: These results demonstrate that M28z10 T cells possess strong antitumor activity and represent a promising therapeutic approach to GC.


Assuntos
Antígenos de Neoplasias/uso terapêutico , Proteínas Ligadas por GPI/uso terapêutico , Receptores de Antígenos Quiméricos/imunologia , Neoplasias Gástricas/genética , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/farmacologia , Modelos Animais de Doenças , Proteínas Ligadas por GPI/farmacologia , Humanos , Mesotelina , Camundongos , Transfecção
11.
J Ultrasound Med ; 33(10): 1773-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25253823

RESUMO

OBJECTIVES: The aim of this study was to investigate the predictive value of enhanced intensity on double contrast-enhanced sonography in assessing lymph node metastasis of gastric cancer. METHODS: A total of 357 patients with gastric cancer were enrolled in this study. Double contrast-enhanced sonography, in which an oral ultrasound contrast agent is combined with an intravenous contrast agent, was performed preoperatively, and the data were analyzed quantitatively. The predictive ability of enhanced intensity, a quantitative double contrast-enhanced sonographic measure, for lymph node metastasis was evaluated retrospectively. RESULTS: Compared to negative lymph node metastasis cases, the presence of thicker lesions, deeper invasion, poorer differentiation, and higher enhanced intensity were found in positive cases (P< .05). An enhanced intensity cutoff value of 16.91 dB was the best point for balancing the sensitivity and specificity (71.50% and 79.30%, respectively) for prediction of lymph node metastasis, with the highest Youden index of 0.508. The area under the receiver operating characteristic curve was 0.828 (P < .001; 95% confidence interval, 0.786-0.870). In cases in which the lesions were hyperenhanced (enhanced intensity >16.91 dB), the lesions were significantly thicker and had deeper invasion, poorer differentiation, and more positive metastasis findings compared to non-hyperenhanced cases (enhanced intensity ≤16.91 dB; P < .05). On logistic regression analysis, the enhanced intensity of primary tumors and the invasion depth were significantly associated with lymph node metastasis. CONCLUSIONS: Double contrast-enhanced sonography with quantitative analysis may be considered a novel alternative imaging modality for noninvasive preoperative evaluation of lymph node metastasis with good reliability.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Aumento da Imagem/métodos , Metástase Linfática/diagnóstico por imagem , Neoplasias Gástricas/diagnóstico por imagem , Adenocarcinoma/patologia , Administração Oral , Idoso , Biópsia , Meios de Contraste/administração & dosagem , Feminino , Humanos , Injeções Intravenosas , Masculino , Pessoa de Meia-Idade , Fosfolipídeos/administração & dosagem , Valor Preditivo dos Testes , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Hexafluoreto de Enxofre/administração & dosagem , Ultrassonografia
12.
Zhongguo Zhong Yao Za Zhi ; 39(2): 175-80, 2014 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-24761627

RESUMO

Wheat bran, as the testa of wheat, has a long history of medication. Modern studies have discovered that wheat bran contains dietary fiber, phenolic compounds, proteins, vitamins, minerals and many other compounds, and boasts wide pharmacological activities such as blood glucose reduction, hypertension reduction, lipid reduction, anti-oxidation, anti-bacteria, anti-inflammatory, antivirus, prevention of colon cancer and mutations, immunomodulation and adsorption of heavy metals. With great development and utilization values, wheat bran has long attracted wide attention from Chinese and foreign scholars. The paper summarizes the latest advance in domestic and foreign studies on effective components in wheat bran and their pharmacological effect, and gives a brief introduction of the limiting factors in the comprehensive development and utilization of wheat bran, in order to provide new preference for the development and utilization of abundant wheat bran resources in China.


Assuntos
Fibras na Dieta/farmacologia , Animais , Fibras na Dieta/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA