Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastric Cancer ; 27(2): 324-342, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310631

RESUMO

Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1ß and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Animais , Humanos , Receptor 6 Toll-Like/metabolismo , Gerbillinae , Neoplasias Gástricas/metabolismo , Citocinas/metabolismo , Infecções por Helicobacter/complicações , Mucosa Gástrica/metabolismo
2.
FASEB J ; 37(10): e23170, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37676718

RESUMO

Small cell lung cancer (SCLC) is one of the most malignant tumors that has an extremely poor prognosis. RNA-binding protein (RBP) and long noncoding RNA (lncRNA) have been shown to be key regulators during tumorigenesis as well as lung tumor progression. However, the role of RBP ELAVL4 and lncRNA LYPLAL1-DT in SCLC remains unclear. In this study, we verified that lncRNA LYPLAL1-DT acts as an SCLC oncogenic lncRNA and was confirmed in vitro and in vivo. Mechanistically, LYPLAL1-DT negatively regulates the expression of miR-204-5p, leading to the upregulation of PFN2, thus, promoting SCLC cell proliferation, migration, and invasion. ELAVL4 has been shown to enhance the stability of LYPLAL1-DT and PFN2 mRNA. Our study reveals a regulatory pathway, where ELAVL4 stabilizes PFN2 and LYPLAL1-DT with the latter further increasing PFN2 expression by blocking the action of miR-204-5p. Upregulated PFN2 ultimately promotes tumorigenesis and invasion in SCLC. These findings provide novel prognostic indicators as well as promising new therapeutic targets for SCLC.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Carcinoma de Pequenas Células do Pulmão , Humanos , RNA Longo não Codificante/genética , Profilinas/genética , Carcinoma de Pequenas Células do Pulmão/genética , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteína Semelhante a ELAV 4
3.
Aging (Albany NY) ; 13(1): 1096-1119, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33291075

RESUMO

In mammals, the well-organized activation of quiescent primordial follicles is pivotal for female reproductive reserve. In the present study, we examined the mechanisms underlying primordial follicle activation in mice. We found that endothelial nitric oxide synthase (eNOS) and its downstream effectors, cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase G (PKG), were expressed in pre-granulosa cells and promoted primordial follicle activation, oocyte growth and granulosa cell proliferation in neonatal ovaries. Mammalian target of rapamycin (mTOR) colocalized with PKG in pre-granulosa cells and was essential for eNOS/cGMP/PKG pathway-induced primordial follicle activation. The eNOS/cGMP/PKG pathway was found to stabilize mTOR protein. The mRNA levels of F-box and WD repeat domain containing 7 (FBXW7), an E3 ubiquitin ligase, correlated negatively with mTOR protein levels in neonatal ovaries. FBXW7 bound to and destabilized mTOR protein in pre-granulosa cells in a ubiquitin/proteasome-dependent manner. However, agonists of the eNOS/cGMP/PKG pathway reduced FBXW7 mRNA levels. FBXW7 overexpression suppressed primordial follicle activation and prevented the eNOS/cGMP/PKG pathway from activating primordial follicles and stabilizing mTOR protein. These findings demonstrate that the eNOS/cGMP/PKG pathway activates primordial follicles by suppressing FBXW7-induced ubiquitination of mTOR in mice.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Células da Granulosa/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Animais , Animais Recém-Nascidos , Proliferação de Células , Proteína 7 com Repetições F-Box-WD/metabolismo , Feminino , Proteína Forkhead Box O3/metabolismo , Camundongos , Oócitos/crescimento & desenvolvimento , Técnicas de Cultura de Órgãos , Folículo Ovariano/crescimento & desenvolvimento , Transporte Proteico , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
4.
Front Oncol ; 10: 581364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194715

RESUMO

Helicobacter pylori is designated as a class I carcinogen of human gastric cancer following long-term infection. During this process, H. pylori bacteria persist in proliferation and death, and release bacterial components that come into contact with gastric epithelial cells and regulate host cell function. However, the impact of long-term exposure to H. pylori lysate on the pathological changes of gastric cells is not clear. In this study, we aimed to investigate the regulation and mechanisms involved in gastric cell dysfunction following continuous exposure to H. pylori lysate. We co-cultured gastric cell lines GES-1 and MKN-45 with H. pylori lysate for 30 generations, and we found that sustained exposure to H. pylori lysate inhibited GES-1 cell invasion, migration, autophagy, and apoptosis, while it did not inhibit MKN-45 cell invasion or migration. Furthermore, Mongolian gerbils infected with H. pylori ATCC 43504 strains for 90 weeks confirmed the in vitro results. The clinical and in vitro data indicated that sustained exposure to H. pylori lysate inhibited cell apoptosis and autophagy through the Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In conclusion, sustained exposure to H. pylori lysate promoted proliferation of gastric epithelial cells and inhibited autophagy and apoptosis via Nod1-NF-κB/MAPK-ERK/FOXO4 signaling pathway. In the process of H. pylori-induced gastric lesions, H. pylori lysate plays as an "accomplice" to carcinogenesis.

5.
Aging (Albany NY) ; 12(24): 25981-25999, 2020 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-33234737

RESUMO

Small cell lung cancer (SCLC) is highly aggressive and prone to hypervascular metastases. Recently, we found profilin 2 (PFN2) expression in SCLC but not in normal tissues. Furthermore, PFN2 expression had been shown to promote angiogenesis through exosomes. However, it remains unclear whether PFN2 contributes to the progression and metastasis of SCLC through angiogenesis. We report here that overexpression (OE) of PFN2 increased, whereas its knockdown (KD) decreased the proliferation, migration, and invasion of SCLC cell H446. The exosomes from OE-H446 (SCLC-OE-exo) exhibited similar effects on H446 properties. Culturing of endothelial cells (ECs) in SCLC-OE conditioned medium (CM) or SCLC-OE-exo increased the migration and tube formation ability of ECs, whereas SCLC-KD-CM and SCLC-KD-exo had inhibitory effects. Interestingly, both SCLC- and EC-derived exosomes were internalized in H446 more rapidly than in ECs. More importantly, OE-PFN2 dramatically elevated SCLC growth and vasculature formation as well as lung metastasis in tumor xenograft models. Finally, we found that PFN2 activated Smad2/3 in H446 and pERK in ECs, respectively. Taken together, our study revealed the role of PFN2 in SCLC development and metastasis, as well as tumor angiogenesis through exosomes, providing a new molecular target for SCLC treatment.


Assuntos
Exossomos/metabolismo , Neoplasias Pulmonares/genética , Neovascularização Patológica/genética , Profilinas/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Meios de Cultivo Condicionados , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Carcinoma de Pequenas Células do Pulmão/irrigação sanguínea , Carcinoma de Pequenas Células do Pulmão/patologia
6.
Biochem Biophys Res Commun ; 533(3): 474-480, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977950

RESUMO

Cisplatin plays a key role in treating small cell lung cancer (SCLC); however, the rapid development of cisplatin resistance limits its treatment effect. The detailed mechanisms of cisplatin-resistance, particularly in SCLC, remain unclear. We analyzed the differentially expressed genes (DEGs) between cisplatin-resistant small cell lung cancer cell line H446/CDDP and its parental cell line H446, using the transcriptome sequencing technique. Gene ontology (GO) analysis and the subsequent tests demonstrated that the functions of protein ubiquitination and autophagy are more active in the H446/CDDP cells. Autophagy plays a protective role in the H446/CDDP cells by using the autophagy inhibitors, 3-methyladenine and bafilomycin A1. Moreover, antimalarial drugs that inhibit autophagy by increasing the pH of lysosomes can also enhance cisplatin-induced cell death.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Antimaláricos/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Análise de Sequência de RNA , Carcinoma de Pequenas Células do Pulmão/genética , Ubiquitinação
7.
Artigo em Inglês | MEDLINE | ID: mdl-32733872

RESUMO

The Mongolian gerbil (Meriones unguiculatus), a well-known "multifunctional" experimental animal, plays a crucial role in the research of hearing, cerebrovascular diseases and Helicobacter pylori infection. Although the whole-genome sequencing of Mongolian gerbils has been recently completed, lack of valid gene-editing systems for gerbils largely limited the further usage of Mongolian gerbils in biomedical research. Here, efficient targeted mutagenesis in Mongolian gerbils was successfully conducted by pronuclear injection with Cas9 protein and single-guide RNAs (sgRNAs) targeting Cystatin C (Cst3) or Apolipoprotein A-II (Apoa2). We found that 22 h after human chorionic gonadotropin (hCG) injection, zygote microinjection was conducted, and the injected zygotes were transferred into the pseudopregnant gerbils, which were induced by injecting equine chorionic gonadotropin (eCG) and hCG at a 70 h interval and being caged with ligated male gerbils. We successfully obtained Cst3 and Apoa2 gene knockout gerbils with the knockout efficiencies of 55 and 30.9%, respectively. No off-target effects were detected in all knockout gerbils and the mutations can be germline-transmitted. The absence of CST3 protein was observed in the tissues of homozygous Cst3 knockout (Cst3-KO) gerbils. Interestingly, we found that disruption of the Cst3 gene led to more severe brain damage and neurological deficits after unilateral carotid artery ligation, thereby indicating that the gene modifications happened at both genetic and functional levels. In conclusion, we successfully generated a CRISPR/Cas9 system based genome editing platform for Mongolian gerbils, which provided a foundation for obtaining other genetically modified gerbil models for biomedical research.

8.
J Endocrinol ; 244(1): 25-40, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31539873

RESUMO

Recent studies raise the possibility that eukaryotic translation elongation factor 1 alpha (eEF1A) may play a role in metabolism. One isoform, eEF1A2, is specifically expressed in skeletal muscle, heart and brain. It regulates translation elongation and signal transduction. Nonetheless, eEF1A2's function in skeletal muscle glucose metabolism remains unclear. In the present study, suppression subtractive hybridisation showed a decrease in Eef1a2 transcripts in the skeletal muscle of diabetic Mongolian gerbils. This was confirmed at mRNA and protein levels in hyperglycaemic gerbils, and in db/db and high-fat diet-fed mice. Further, this downregulation was independent of Eef1a2 promoter methylation. Interestingly, adeno-associated virus-mediated eEF1A2 overexpression in skeletal muscle aggravated fasting hyperglycaemia, hyperinsulinaemia and glucose intolerance in male diabetic gerbils but not in female gerbil models. The overexpression of eEF1A2 in skeletal muscle also resulted in promoted serum glucose levels and insulin resistance in male db/db mice. Up- and downregulation of eEF1A2 by lentiviral vector transfection confirmed its inhibitory effect on insulin-stimulated glucose uptake and signalling transduction in C2C12 myotubes with palmitate (PA)-induced insulin resistance. Furthermore, eEF1A2 bound PKCß and increased its activation in the cytoplasm, whereas suppression of PKCß by an inhibitor attenuated eEF1A2-mediated impairment of insulin sensitivity in insulin-resistant myotubes. Endoplasmic reticulum (ER) stress was elevated by eEF1A2, whereas suppression of ER stress or JNK partially restored insulin sensitivity in PA-treated myotubes. Additionally, eEF1A2 inhibited lipogenesis and lipid utilisation in insulin-resistant skeletal muscle. Collectively, we demonstrated that eEF1A2 exacerbates insulin resistance in male murine skeletal muscle via PKCß and ER stress.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Resistência à Insulina/genética , Músculo Esquelético/metabolismo , Fator 1 de Elongação de Peptídeos/fisiologia , Proteína Quinase C beta/metabolismo , Animais , Masculino , Camundongos
9.
J Am Heart Assoc ; 7(21): e009167, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30571388

RESUMO

Background Vascular development, including vasculogenesis and angiogenesis, is involved in many diseases. Cystatin C ( CST 3) is a commonly used marker of renal dysfunction, and we have previously reported that its expression level is associated with variations in the gerbil circle of Willis. Thus, we hypothesized that CST 3 may affect endothelial function and angiogenic capacity. In the current study, we sought to determine the influence of CST 3 on endothelial function and explore its potential regulatory pathway. Methods and Results We analyzed CST 3 and vascular endothelial growth factor A ( VEGFA) levels in different developmental stages of gerbils using ELISA s and immunofluorescence (to examine the relationship between CST 3 and VEGFA . We used a real-time cell analyzer, cytotoxicity assays, and the chorioallantoic membrane assay to investigate the function of CST 3 in endothelial cells and the chorioallantoic membrane. Additionally, we used Western blotting to explore the downstream targets of CST 3. The expression levels of both CST 3 and VEGFA were at their highest on day 10 of the embryonic stage. CST 3 inhibited endothelial cell proliferation, migration, tube formation, and permeability, as well as vascular development in the chorioallantoic membrane. Blocking of VEGFA dose-dependently increased CST 3 expression in arterial and venous endothelial cells. Furthermore, overexpression and knockdown of CST 3 significantly affected the protein levels of p53 and CAPN10 (calpain 10), suggesting that CST 3 might play a role in vascular development through these proteins. Conclusions CST 3 may be associated with vascular development and angiogenesis, and this effect could be promoted by blocking VEGFA .


Assuntos
Membrana Corioalantoide/irrigação sanguínea , Cistatina C/biossíntese , Células Endoteliais/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Movimento Celular , Proliferação de Células , Gerbillinae , Neovascularização Patológica , Neovascularização Fisiológica
10.
Oncol Lett ; 14(4): 4339-4348, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28943948

RESUMO

Tumorigenesis is often caused by somatic mutation or epigenetic changes in genes that regulate aspects of cell death, proliferation and survival. Although the functions of multiple tumor suppressor genes have been well studied in isolation, how these genes cooperate during the progression of a single tumor remains unclear in numerous cases. The present study used N-methyl-N-nitrosourea (MNU), one of the most potent mutagenic nitrosourea compounds, to induce thymic lymphoma in C57BL/6J mice. Subsequently, the protein expression levels of phosphatase and tensin homolog (PTEN), transformation protein 53 and mutS homolog 2 (MSH2) were evaluated concomitantly in the thymus, liver, kidney and spleen of MNU-treated mice by western blotting. To determine whether changes in expression level were due to aberrant epigenetic regulation, the present study further examined the methylation status of each gene by MassARRAY analysis. During the tumorigenesis process of an MNU-induced single thymic lymphoma, the expression level of PTEN was revealed to be reduced in thymic lymphoma samples but not in normal or non-tumor thymus tissue samples. Furthermore, a marked reduction of P53 expression levels were demonstrated in thymic lymphomas and spleens with a metastatic tumor. Conversely, MSH2 upregulation was identified only in liver, kidney, and spleen samples that were infiltrated by thymic lymphoma cells. Furthermore, the present study revealed that a number of 5'-C-phosphate-G-3' sites located in the promoter of aberrantly expressed genes had significantly altered methylation statuses. These results improve the understanding of the course of mutagen-induced cancer, and highlight that epigenetic regulation may serve an important function in cancer.

11.
Acta Crystallogr C ; 68(Pt 4): m109-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22476139

RESUMO

The structure of the title compound, [Cd(2)(C(8)H(4)O(4))Cl(2)(C(6)H(15)NO(3))](n), consists of one-dimensional chains in which each centrosymmetric tetranuclear Cd(4)Cl(4)O(2) cluster is terminated by two chelating triethanolamine (teaH(3)) ligands but linked to two adjacent clusters through four bridging benzene-1,4-dicarboxylate (bdc) ligands. The tetranuclear Cd(4)Cl(4)O(2) clusters are held together via bridging Cl and O atoms. Three directional hydrogen bonds from the multi-podal hydroxy groups of the teaH(3) ligand stabilize and extend the one-dimensional chains into a three-dimensional framework. All three hydroxy groups of the teaH(3) ligand form hydrogen bonds, illustrating the fact that the teaH(3) ligand can serve as an excellent hydrogen-bond donor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA