Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 11(4): nwae028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425424

RESUMO

Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.

2.
Nat Commun ; 15(1): 454, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212623

RESUMO

Emerging evidence indicates that the activation of ferroptosis by glutathione peroxidase 4 (GPX4) inhibitors may be a prominent therapeutic strategy for tumor suppression. However, the wide application of GPX4 inhibitors in tumor therapy is hampered due to poor tumor delivery efficacy and the nonspecific activation of ferroptosis. Taking advantage of in vivo self-assembly, we develop a peptide-ferriporphyrin conjugate with tumor microenvironment specific activation to improve tumor penetration, endocytosis and GPX4 inhibition, ultimately enhancing its anticancer activity via ferroptosis. Briefly, a GPX4 inhibitory peptide is conjugated with an assembled peptide linker decorated with a pH-sensitive moiety and ferriporphyrin to produce the peptide-ferriporphyrin conjugate (Gi-F-CAA). Under the acidic microenvironment of the tumor, the Gi-F-CAA self-assembles into large nanoparticles (Gi-F) due to enhanced hydrophobic interaction after hydrolysis of CAA, improving tumor endocytosis efficiency. Importantly, Gi-F exhibits substantial inhibition of GPX4 activity by assembly enhanced binding (AEB) effect, augmenting the oxidative stress of ferriporphyrin-based Fenton reaction, ultimately enabling antitumor properties in multiple tumor models. Our findings suggest that this peptide-ferriporphyrin conjugate design with AEB effect can improve the therapeutic effect via induction of ferroptosis, providing an alternative strategy for overcoming chemoresistance.


Assuntos
Ferroptose , Neoplasias , Humanos , Endocitose , Hemina , Hidrólise , Peptídeos/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
J Control Release ; 353: 186-195, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403684

RESUMO

The drug efflux by P-glycoprotein (P-gp) is the primary contributor of multidrug resistance (MDR), which eventually generates insufficient nuclear drug accumulation and chemotherapy failure. In this paper, reversible covalent nanoassemblies on the basis of catechol-functionalized methoxy poly (ethylene glycol) (mPEG-dop) and phenylboronic acid-modified cholesterol (Chol-PBA) are successfully synthesized for delivery of both doxorubicin (DOX, anti-cancer drug) and tariquidar (TQR, P-glycoprotein inhibitor), which shows efficient nuclear DOX accumulation for overcoming tumor MDR. Through naturally forming phenylboronate linkage in physiological circumstances, Chol-PBA is able to bond with mPEG-dop. The resulting conjugates (PC) could self-assemble into reversible covalent nanoassemblies by dialysis method, and transmission electron microscopy analysis reveals the PC distributes in nano-scaled spherical particles before and after drug encapsulation. Under the assistance of Chol, PC can enter into lysosome of tumor cells via low-density lipoprotein (LDL) receptor-mediated endocytosis. Then the loaded TQR and DOX are released in acidic lysosomal compartments, which inhibit P-gp mediated efflux and elevate nuclear accumulation of DOX, respectively. At last, this drug loaded PC nanoassemblies show significant tumor suppression efficacy in multidrug-resistant tumor models, which suggests great potential for addressing MDR in cancer therapy.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Resistencia a Medicamentos Antineoplásicos , Doxorrubicina , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias/tratamento farmacológico , Portadores de Fármacos/química , Subfamília B de Transportador de Cassetes de Ligação de ATP , Linhagem Celular Tumoral , Células MCF-7
4.
Colloids Surf B Biointerfaces ; 217: 112655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785715

RESUMO

Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Imunoterapia , Metaloproteinase 2 da Matriz , Neoplasias/patologia , Neoplasias/terapia , Peptídeos , Fagocitose , Microambiente Tumoral
5.
Int J Chron Obstruct Pulmon Dis ; 17: 1537-1552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811742

RESUMO

Purpose: Pulmonary surfactant proteins A (SP-A) and D (SP-D) are lectins, involved in host defense and regulation of pulmonary inflammatory response. However, studies on the assessment of COPD progress are limited. Patients and Methods: Pulmonary surfactant proteins were obtained from the COPD mouse model induced by cigarette and lipopolysaccharide, and the specimens of peripheral blood and bronchoalveolar lavage (BALF) in COPD populations. H&E staining and RT-PCR were performed to demonstrate the successfully established of the mouse model. The expression of SP-A and SP-D in mice was detected by Western Blot and immunohistochemistry, while the proteins in human samples were measured by ELISA. Pulmonary function test, inflammatory factors (CRP, WBC, NLR, PCT, EOS, PLT), dyspnea index score (mMRC and CAT), length of hospital stay, incidence of complications and ventilator use were collected to assess airway remodeling and progression of COPD. Results: COPD model mice with emphysema and airway wall thickening were more prone to have decreased SP-A, SP-D and increased TNF-α, TGF-ß, and NF-kb in lung tissue. In humans, SP-A and SP-D decreased in BALF, but increased in serum. The serum SP-A and SP-D were negatively correlated with FVC, FEV1, FEV1/FVC, and positively correlated with CRP, WBC, NLR, mMRC and CAT scores (P < 0.05, respectively). The lower the SP-A and SP-D in BALF, the worse the lung function and the increased probability of complications and ventilator use. Moreover, the same trend emerged in COPD patients grouped according to GOLD severity grade (Gold 1-2 group vs Gold 3-4 group). The worse the patient's condition, the more pronounced the change. Conclusion: This study suggests that SP-A and SP-D may be related to the progression and prognostic evaluation of COPD in terms of airway remodeling, inflammatory response and clinical symptoms, and emphasizes the necessity of future studies of surfactant protein markers in COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Surfactantes Pulmonares , Remodelação das Vias Aéreas , Animais , Biomarcadores , Camundongos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Proteína A Associada a Surfactante Pulmonar/uso terapêutico , Proteína D Associada a Surfactante Pulmonar/análise , Proteína D Associada a Surfactante Pulmonar/uso terapêutico , Surfactantes Pulmonares/uso terapêutico
6.
Nano Lett ; 22(10): 3983-3992, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35548949

RESUMO

Lysosome-targeting self-assembling prodrugs had emerged as an attractive approach to overcome the acquisition of resistance to chemotherapeutics by inhibiting lysosomal sequestration. Taking advantage of lysosomal acidification induced intracellular hydrolytic condensation, we developed a lysosomal-targeting self-condensation prodrug-nanoplatform (LTSPN) system for overcoming lysosome-mediated drug resistance. Briefly, the designed hydroxycamptothecine (HCPT)-silane conjugates self-assembled into silane-based nanoparticles, which were taken up into lysosomes by tumor cells. Subsequently, the integrity of the lysosomal membrane was destructed because of the acid-triggered release of alcohol, wherein the nanoparticles self-condensed into silicon particles outside the lysosome through intracellular hydrolytic condensation. Significantly, the LTSPN system reduced the half-maximal inhibitory concentration (IC50) of HCPT by approximately 4 times. Furthermore, the LTSPN system realized improved control of large established tumors and reduced regrowth of residual tumors in several drug-resistant tumor models. Our findings suggested that target destructing the integrity of the lysosomal membrane may improve the therapeutic effects of chemotherapeutics, providing a potent treatment strategy for malignancies.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Lisossomos/patologia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Silanos/farmacologia , Silanos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA